Innovative, Versatile, and Cost-Effective Solid Oxide Fuel Cell Stack Concept

Nguyen Q. Minh

Center for Energy Research University of California San Diego La Jolla, CA

Annual SOFC Project Review

July 2020

Innovative, Versatile and Cost-Effective SOFC Stack Concept Project

- <u>Project</u>: Innovative, Versatile and Cost-Effective Solid Oxide Fuel Cell Stack Concept (DE-FE0026211)
- <u>Project Objective</u>: Develop and evaluate a versatile stack configuration based on a primesurface interconnect design that can incorporate different types of cell construction for a broad range of power generation applications
- <u>DOE/NETL Project Manager</u>: Mr. Jason Montgomery
- Project Team:
 - UCSD
 - Center for Energy Research: Dr. Nguyen Minh (PI), Dr. Tuyen Tran (Assistant Project Scientist), Dr. He Qi (Postdoctoral Scholar)
 - Department of Electrical Engineering and Center for Memory and Recording Research: Dr. Eric Fullerton (Professor), Haowen Ren (Graduate Student)
 - Department of NanoEngineering: Dr. Shirley Meng (Professor), Erik Wu (Graduate Student)
 - OxEon
 - Dr. Elango Elangovan, Mr. Joe Hartvigsen

Stack Design Concept

Incorporating Conventional Cells

Stack Design Concept

Incorporating Metal-Supported Cells

Project Technical Activities

- Prime surface interconnect design and fabrication development
- Metal-supported cell structure development
- Stack development
- Stack operation demonstration (to be initiated)
- Stack cost assessment

PRIME-SURFACE INTERCONNECT DESIGN AND FABRICATION DEVELOPMENT

Prime-Surface Interconnect

- Egg-carton shaped prime-surface interconnect design
- Two-step pressing fabrication process
- Full-size interconnects being fabricated

METAL SUPPORTED CELL STRUCTURE DEVELOPMENT

Sputtering Process

- Sputtering for making thin-film SOFCs on metal supports and other substrates
- Thin-film cells sputtered on porous anodized aluminum oxide (AAO) substrates for cell performance testing and evaluation

Sputtered Thin-Film Cell Microstructure

- → GDC (250nm)
- → YSZ (1.4 um)
- → Ni-YSZ (650nm)
- → AAO (100um)

Ultra Fine Nano Structured Electrodes and Fully Dense Electrolyte

Superior Performance of Sputtered Thin-Film Cell at Reduced Temperatures

LSC-GDC / GDC / YSZ / Ni-YSZ , Hydrogen Fuel

Best cell performance reported at these reduced temperatures

Thin-Film Cell Performance on Dry Methane

LSC-GDC/GDC/YSZ/Ni-GDC, Dry Methane

Pure Dry Methane 100sccm

Best cell performance on dry methane reported at these reduced temperatures

Improved Cell Performance (Hydrogen)

LSC-GDC/GDC/YSZ/NI-LSCF

Performance improvement with Ni-LSCF anode

Improved Cell Performance (Dry Methane)

Addition of Ru in anode

in anode

Performance Improvements with addition of Ru and Ru-LSCF in the anode

STACK DEVELOPMENT

Testing of Laboratory-Scale Stack Incorporating Thin-Film Cell

Testing of Laboratory-Scale Stack

Incorporating Sintered Anode-Supported Cell

Full-Size Stack Design

Incorporating Prime-Surface Interconnects and Conventional Sintered Cells

3D Printing Evaluation - Interconnect Layer

A set of 3D printed interconnect layers

A 3D printed interconnect overlaid with a cell

STACK COST ASSESSMENT

Stack Components for Cost Estimation

SOFC Repeat Unit

Key Assumptions

The cost basis and key assumptions for the cost estimate:

- 5 kW SOFC stack operating on natural gas and 50,000 units per year (250 MW/yr).
- The cost is estimated based on a stack power at 0.7 V, 80% fuel utilization (U_f), 700°C.
- The cost estimation based on sputtered cells fabricated in plant, all other components are procured from suppliers and vendors.

The cost estimate establishes a factory cost, which includes:

- Equipment and Plant Depreciation
- Tooling Amortization
- Facility and Equipment Maintenance
- Utilities
- Cost of Capital
- Purchased Materials
- Fabrication, Assembly and Testing Labors
- Indirect Labor and Materials

The following costs are not included in the cost estimate:

- Research and Development
- Sales and Marketing
- General and Administration
- Warranty & Taxes

Cell / Stack Performance for Cost Estimation

Power Output	5 kW
Temperature	700°C
Fuel	Natural Gas
Fuel Utilization	80%
Power density	1.9 W/cm ²
Current density	2.7 A/cm ²
Voltage	0.7 V
Cell size	10cm X 10cm
No. cell per 5 kW stack	32 cells

Stack Material Cost Estimation

Estimation Process for Other Stack Costs

Total Stack Stack Cost Breakdown Preliminary Results

For Sputtered Cell on Metal Support

	Cost per kW
Materials	\$70.7
Labor	\$21.0
Equipment	\$11.4
Facility & Utilities	\$9.2
Total	\$112.3

Total Stack Cost Breakdown

For Sputtered Cell on AAO Support

	Cost per kW
Materials	\$230.7
Labor	\$21.0
Equipment	\$11.4
Facility & Utilities	\$9.2
Total	\$272.3

Total Cost Breakdown

Summary of Key Achievements

Key achievements since last project review:

- Fabrication process for prime-surface interconnects
- Cell performance improvements and recorded performance at reduced temperatures with methane fuel
- Design and specifications for full-size stacks
- Stack cost assessment

Acknowledgments

- DOE/NETL SOFC project management, especially Dr. Patcharin Burke and Mr. Jason Montgomery
- UCSD and OxEon SOFC project team