

SOFC Development at PNNL: Overview

July 10, 2020

- J. Hardy, B. Koeppel, Y. Chou, C. Coyle,
- J. Choi, B. Kirby, Z. Xu, N. Karri, J. Bao,
- B. Nguyen, N. Canfield, T. Droubay, D. Wang,
- K. Meinhardt, G. Whyatt, J. Davis, C. Fischer,
- C. Lowrey, and J. Bonnett

PNNL is operated by Battelle for the U.S. Department of Energy

Scope of Work

- Core Technology Program
 - Materials Development
 - ✓ Cathode materials and interactions
 - Effects of volatile species (Cr, Sr) on cell performance
 - Mitigation of Cr poisoning: Evaluation of Cr capture materials
 - Cathode contact materials: Enhancing reliability of cathode/contact materials interfaces
 - ✓ Interconnects/BOP
 - Co-free protective coatings for metallic interconnects
 - Modeling/Simulation
 - ✓ SOFC Stack and System Modeling Tool Development
 - ✓ Modeling of Stack Degradation and Reliability
- Small-Scale SOFC Test Platform
 - Evaluation of performance and reliability of new stack technologies (1-10 kW)

Cr Poisoning

- Challenges
 - Developing an understanding of the effects of Cr poisoning on phase formation in and atomic structure of SOFC cathodes
 - Mitigation of effects of volatile Cr species on cathode performance
- Approaches
 - In-operando XRD of LSM and LSCF-based cathodes with various Cr concentrations in the cathode air stream
 - Evaluation/optimization of Cr "getter" materials intended to capture volatile Cr species
 - ✓ May be located upstream of stack and/or within stack ("on-cell" capture)
 - \checkmark Possibly use upstream getter as primary, and "on-cell" getter as secondary ("polishing")

Cr Poisoning: In-operando XRD

- A hydrogen safety incident at PNNL prompted safety upgrades to all experiments using hydrogen.
- Safety upgrades for in-operando XRD of SOFCs were installed:
 - Metallic lines for flammable gases
 - Over temperature monitoring
 - Fume hood pressure monitoring
 - Flammable gas sensing
 - Automatic shut down

Baseline test on LSCF cell in dry, clean air was recently completed – XRD analysis pending

Poster: SOFC Development at PNNL: Cathode Task (Brent Kirby)

0°C, Dry	Air		
) ours)	800	1000	1200

Cr Gettering Materials

- In previous work, LSCF perovskites with high Sr content were shown to be effective as upstream getters due to high reactivity with Cr vapor species (forming SrCrO₄ as reaction product).
- For <u>on-cell applications</u>, Cr-gettering material needs to have matched CTE, high electrical conductivity, chemical compatibility, and thermal stability.
- Approach: Evaluate LSCF/LSM and LSCF/LSCo mixtures as dual purpose cathode contact / Cr getter materials.

Cr Gettering Materials: LSCF/LSM Validation Testing

No Cr Getter:

80% LSCF / 20% LSM: On-cell Getter

cell 262, ASC3, LSM/4628 (20%) wet air

8.9%/kh

1200 1500 1800

6

Cr Gettering Materials: LSCF/LSCo Characterization

Pacific

Northwest

Poster: Mitigation of Cr poisoning - An Investigation of LSCo/LSCF Composite (Matt Chou)

Vapor Transport of Species from LSCF Cathodes

Pacific

Northwest

• Early tests configured as above indicated transport of Sr and Co

- Subsequent tests designed for long surface diffusion paths (above) between cathode material and substrate sink indicated no appreciable Sr and Co transport
- Open geometry may have limited the concentration of vapor phases, thus new fixture was designed with long surface paths and enclosed chamber
- Next tests are pending

Poster: SOFC Development at PNNL: Cathode Task (Brent Kirby)

Cathode / Interconnect Contact Materials

- Challenge
 - Electrical contact materials at cathode / interconnect interfaces in planar stacks tend to be mechanical "weak link," especially during thermal cycling, due to brittle nature of ceramic materials and/or thermal expansion mismatch with adjacent components
 - \checkmark Low processing temperatures and constrained sintering conditions during stack fabrication lead to low intrinsic strength and low bonding strength of ceramic contact materials, especially at contact-tocathode interface
 - ✓ Use of metallic contact materials limited by cost, volatility, and/or electromigration
- Approach
 - Use composite approach to develop ceramic-based contact materials having improved mechanical reliability by reducing thermal expansion mismatch and increasing contact strength/toughness

LSCo / mullite / fiber composite contact materials

- LSCo perovskite offers very high electrical conductivity but also has high CTE (~18x10⁻⁶/°C) as cathode contact one needs to overcome the large residual stresses by:
- Reduce thermal stresses by adding low CTE phase mullite (~5.4x10⁻⁶/°C)
- Enhance the strength/toughness by reinforcement with strong short Al_2O_3 fibers with high elastic modulus

Validation Testing

<u>Issues encountered with LSCo/mullite approach</u>

- Needs very high vol. fraction (~0.4) to match CTE in 12-13x10⁻⁶/°C
- Poor densification by sintering with rigid inclusions
- Poor strength with mullite at high volume fractions
- Poor conductivity with mullite at high volume fractions
- Potential contamination by Si in presence of moisture?
- Adding 5-10v% Al_2O_3 improved strength and thermal cycle stability

Therefore investigating LSCo/Alumina Fiber composites

LSCo/Al₂O₃ fiber composite contact materials characterization

Pacific

Northwest

Poster: Composite Cathode Contact Development: An Investigation of LSCo/AI2O3(f) Composite

/AI2O3(f) Composite (Matt Chou)

11

Interconnect / BOP Coatings

- Challenges
 - Metallic interconnects susceptible to oxidation (leading to high electrical resistance), Cr volatilization (leading to Cr poisoning), and reactions with seals (leading to mechanical failure)
 - Other metallic components susceptible to Cr volatilization
- Approaches
 - Electrically conductive Mn-Co spinel coatings exhibit good performance; due to possible issues with Co cost and availability, developing Co-free alternatives ✓ Cu-Mn-O; Ni-Mn-O; Cu-Fe-O
 - Reactive air aluminization for applications that don't require electrical conductivity
 - ✓ Simple slurry-based process
 - ✓ Fabrication in air at temperatures as low as 900°C

Co-free Electrically Conductive Protective Coatings

EDS Layered Image 10

EDS Layered Image

DS Layered Image 18

Co-free Electrically Conductive Protective Coatings

Poster: Short term stability of (M, Mn or Fe)3O4 spinel Layer for SOFC Stacks (Jung Pyung Choi)

Designed & Built Small-Scale SOFC Test Platform

- Purpose:
 - Evaluate performance and reliability of emerging stack technologies (2-10 kW) under realistic operating conditions
- Test capabilities:
 - Steam-reformed methane
 - Steady-state isothermal tests
 - ✓ Variables: temperature, current, voltage, fuel
 - Thermal cycling
 - E-stop cycles (redox tolerance)
 - Variable anode recycle rates

- Validated the test platform in 500 hour test on reformed methane with 40% anode recycling – operated a 3.7 kW stack at 57% gross LHV efficiency
- Thereafter, various recycle rates were tested for effects on efficiency

Small-Scale SOFC Test Platform

Key features:

- Operation on methane via steam reforming
- Anode recirculation loop
- High efficiency microchannel heat exchangers for heat recuperation and anode/cathode stream temperature equalization
- Automated control system

Overview: Stack Modeling Tools

Technical Challenge

 SOFC stacks must be designed for high electrochemical performance and mechanical reliability

Modeling Objective

 Develop numerical modeling tools to aid the industry teams' design and engineering efforts at the cell/stack scale

Technical Approach

- SOFC-MP 2D Analysis of electrochemical and thermal performance of tall symmetric stacks
- **SOFC-MP 3D** Detailed 3D multi-cell stack structures for electrochemical, thermal, and stress analyses
- **SOFC-ROM** Reduced order models (ROMs) of SOFC stacks for use in system modeling analyses
- **GUI** Common interface for the modeling tools with pre-processing and post-processing capabilities

Recent Accomplishments

- Implemented high-pressure operation in SOFC-MP
- Developed complete ROM generation tool
- Improved ROM exhaust species predictions through use of DNN and data normalization techniques
- Demonstrated dual mode degradation for prediction of end-of-life (EOL) performance
- Demonstration of SOFC tools for electrolysis mode

Program Modeling Objective: Linking Models Across Different Length Scales

- Recent modeling activity has focused on *linking model results across length scales*
 - Utilize a Reduced Order Model (ROM) approach to improve the accuracy of power system models

System Models

Reduced Order Model (ROM)

Overview: Reduced Order Model (ROM)

Technical Challenge

• SOFC systems must be designed for high *efficiency* and low capital costs

Modeling Objective

Improve accuracy and capability of SOFC systems analyses used for design and cost of energy (COE) predictions

Technical Approach

- Integrate the PNNL SOFC-MP 2D model into NETL's system model as a *reduced-order model* (ROM)
 - Develop ROM that improves accuracy of the SOA SOFC analysis with reduced computational time and complexity
- Investigate machine learning (ML) approaches to *improve accuracy* and sensitivity of generated ROMs

Recent Accomplishments

- Delivered numerous ROMs for different power system architectures to NETL collaborators
- Developed automated ROM construction tool and GUI to support local and remote solution on HPC cluster
 - Included error quantification for 95% confidence interval and sampling tool for high-dimensional parameter space
- Used machine learning methods to improve the prediction accuracy of stack exhaust species composition and classify case results
- Reviewed SOA electrochemical performance

ROM Generation

- General process diagram for NGFC or **IGFC** power system
- Evaluated stack performance and thermal gradient for wide range of potential operating conditions
- Provided NETL collaborators with 27 ROMs for various configurations to support pathway studies
 - NGFC
 - IGFC (conventional, enhanced, catalytic)
 - SOA and future stack performance
 - System w/ or w/o carbon capture
 - System w/ or w/o vent gas recirculation concept

Input parameters	Range
Average current density (A/m ²)	2000-6000
Fuel temperature (C)	15-600
Internal reforming (NA) *	0-1
Oxidant temperature (C)	550-800
Oxidant recirculation (NA)	0-0.8
Oxygen to carbon ratio (NA)	1.5-3
Stack fuel utilization (NA)	0.4-0.95
Stack oxidant utilization (NA)	0.0833-0.8
System pressure (ATM)	1-5
VGR temperature (C) **	15-204
VGR rate (NA) **	0.3-0.97

333

* Only available
in NGFC
** Only available
in VGR

ROM Graphical User Interface (GUI)

Put cases or

 Created a graphical user interface (GUI) and manual to allow a general user to more easily create a ROM using SOFC-MP stack results

1. Sampling	
SOFC-MP GUI Model Pre-Processing Simulation Post-Processing ROM Help	- x
ROM	
ROM Set Samplings Simulations Simulations on HPC Kinging Pro	ediction Error Analysis and Additional Simulations SmartSamp < 2 Analyzing Input Parameters in Samples
E:\Scratch\SOFC\NGFC_VGFV\NGFC_SOA_BVU_CCS_cases\LH Add samples from a file	# Input Variables 9 # Samples 512 Range
New Latin Hypercube Sampling	
	Display Samples in 2D space
	Display Samples in 3D space

Poster: Reduced Order Models (ROMs) for SOFC Stack Performance Prediction (Jie Bao)

2. Create Cases and Solve

3	

28.4												RO	М	
			-									BO	M Set	Sampling
DM Se	t Samplings	Simulations	Simulations of	n HPC Kri	iging F	Prediction	Error Analysis	and Add	litional Simulations	SmartSamp	< >		i Fusi di	
~	Use SOFCMF	P2D4ROM Wr	apper									•	Colori	
	O NGFC CC	S	O IGFC Con	ventional	0	IGFC Con	ventional VGR						Select	simulation
	O NGFC №	CCS	O IGFC Enh	anced	0	IGFC Enh	anced VGR						Sin Sta	iulation.St ick Voltag
	O NGFC CC	S VGR		alutic	0	IGEC Cata	alutic VGR						Ave	g cell volt ick Currer
				alytic		ion o con	ayao vari							g current
	Create/Rese	et ROM Cases	•						Check Simulation	ins Status			Sele	ect all
	Run SOFC-MF	2D Simulatio	ns Max	imum instar	nces of s	simultaneou	us simulations a	llowed	1				Cree	
Sir	nulations Progr	229							Stop Simula	ations			Crea	ate input i
	imulation statis	tics											Dis	play Krigi
													Kriging	Format fo
													Репо	im krigini
Di	roton, on loop	I machina E	\ Soratab\ SOE				P\/0_CCS_020							
	ectory officea		. (3018(011/301	c marc_r	/united	arc_30A_	010_000_000	56						
эм														
			0	1100										
DM Se	t Samplings	Simulations	Simulations o	n HPC Kr	iging I	Prediction	Error Analysis	and Add	ditional Simulations	SmartSamp	< >		ROM	
														Deseliation
ш	C name opp	etance pol cou	,	Llaar		haoi529						- P	Kinging	Frediction
пг	c name _cons	atorioo.prii.go	·	Oser	name [000323					_			
Allo	cation accoun	nt sofc		Partit	tion	slum		Time	1:00:00				Pre	dict Inpu
Dir	ectory on HPC	/pic/proje	ects/face/lattic	e/baoj529/	/SOFC/	Cases/SO	FCMP/VGR/NO	GFC_SO	A_BV0_CCS		ן ר			
			the directory	on HPC	Г	llee "er	ratch" drive on	comput	ing padaa		- I	- I	Predi	iction Out

	Kriging Prediction	n Error Analysis and Additional Simulations	SmartSampling	Cross Validation	ML Prediction	< >
[1:00:00	Predict Input Prediction Out	t File	Display ROM	Variables ns Only Pr Exclude Exclude	redictions and Simulations all non-converged solutions all failed simulations	
Terminal	Prediction	Using Kriging	Show Ir Contour plo Variab	nput and Output V ot for a selected va ole for X-axis	riables	
[Simulations] tab to continue.	Show result of a	predicted case Run Simulation Show Simulation Data	Variab Variab	ole for Y-axis	v v	

Build Kriging ROM

ulations Simulations on HPC Kriging	Prediction Error Analysis and Additional Simulations SmartSamp
ged solutions 🗹 Exclude all failed :	simulations
variables for Kriging	Display ROM Variables
^	Show range for a variable Range
_	✓
~	Show All ROM Input and Output Data
ect none	Contour plot for a selected variable over a selected 2D space
NGFC_SOA_BV0_CC	Variable for X-axis
ıt	Variable for Y-axis
	Variable for Z-axis
Output file name	Variable for Contour

4. ROM Prediction

ROM GUI Features

Contr

Base SC

Voltage-current

function file

- Simplified creation of ROMs for different NGFC and IGFC system configurations w/ or w/o carbon capture and storage (CCS) and vent gas recirculation (VGR) options
- Smart sampling of more cases in regions of high mean square error
 - Local solution on PC
 - Remote solution on high performance computer (HPC)
- Cross validation of results to determine confidence interval of prediction
- Deep neural network (DNN) prediction option in addition to the standard Kriging prediction

	ROM						
	ROM Set Sampling	s Simulations	Simulatio	ns on HPC	Kriging	Prediction	Error Analys
	Use SOFC	MP2D4ROM W	rapper				
		CCS		Convention	al C) IGFC Con	ventional VG
	○ NGFC	No CCS	O IGFC	Enhanced	0) IGFC Enh	anced VGR
	O NGFC	CCS VGR		Catalytic	C) IGFC Cata	lytic VGR
	Create/R	eset ROM Cases	;				
	Run SOFC-	MP 2D Simulatio	ns	Maximum ins	stances o	f simultaneou	us simulations
	Simulations Pro	gress					
	Simulation sta	tistics					
		_					
	Directory on lo	cal machine E	:\Scratch\	SOFC/NGF	C_VGR\N	IGFC_SOA_	BV0_CCS_ca
	l						
ol file		7	No	Gener	rate san	nples 🔶	Run simu
FC-MP file	Smart sam	pling ?					

RMSE

Generate

itial sample

ROM w/ Machine Learning: Result Classification

- Not all input parameter combinations are physically viable for the system
 - Developed classifier network to identify physically operational cases
 - Deep neural network (DNN) regression + DNN classifier + mass balance model (MBM) to improve prediction accuracy and reduce RMS error by 2-3X

Stack State-of-Art Electrochemical Performance

- Reviewed voltage-current density (V-J) data within and outside the DOE SOFC program to ensure the best state-of-art (SOA) performance is being used for modeling simulations
- Challenges
 - Teams often report performance but do not provide enough data (i.e., stack details, conditions) to fully identify the V-J curve
 - Difficult to make 'apples-to-apples' comparisons
- **Observations**
 - Multi-cell stacks not as good as single cells due to ohmic losses
 - All-ceramic cells not as good as planar anode-supported cells
 - For the SOFC program, FCE and Delphi stacks are top performers
 - Wide range of activation losses due different material sets
 - The best metal-supported cells are approaching performance of best anode-supported cells, so purported advantages in lower temperature operation and higher durability may drive it to be the prominent architecture
 - V-J data used for ROM activity is representative of current stacks

Voltage-Current Density Plots

Overview: Short Term Reliability

Technical Challenge

• Stack operating stresses *dependent* on design, flow configuration, operating conditions and affect reliability

Modeling Objective

• Investigate influence of stack design, geometry, fuel composition and *identify* conditions for high reliability

Technical Approach

- Predict stack temperature distribution with different designs, geometry, flow configuration, and fuel compositions for NGFC systems using SOFC-MP
- Perform FEA stress analysis to predict operating and shutdown stresses and evaluate mechanical reliability
- Identify optimal operating conditions using design-ofexperiments approach with desirability function

Recent Accomplishments

 Evaluated electrochemical/thermal performance and mechanical reliability of co- and counter-flow configurations for multi-cell stacks under similar operating conditions

Beginning of Life (BOL) 3D Stack Evaluations

- Evaluated 15 and 45 cell large area stacks to understand the benefits of flow configuration and operating conditions on the relative performance at beginning of life (BOL)
- Counter-flow stacks generally had higher power and peak temperature but also higher temperature difference for similar operating states and average cell temperature
- Local peak temperatures at corners induced high stresses and predicted high local failure probability
- This was more influential than the • actual flow configuration effect
 - Reinforces importance of the sensitivity to realistic geometries and adequate fuel/oxidant manifold design

26

Overview: Long Term Degradation

Technical Challenge

- *Bridge scales* of degradation from microstructure to stack
- Understand effect of creep

Modeling Objective

- Identify operating conditions for optimal initial performance and minimal degradation
- Investigate effect of creep on SOFC mechanical reliability

Technical Approach

- Evaluate stack performance with *multiple degradation mechanisms* acting independently and simultaneously
 - E.g., grain coarsening, Cr poisoning, scale growth, mechanical creep
- Evaluate BOL and *long-term reliability* of single and multicell stacks under realistic operating conditions.

Recent Accomplishments

- Evaluated the performance and reliability of single and multi-cell SOFCs stacks under one or more degradation mechanisms
- Material creep model parameters were identified for the SOFC operational range $(700 - 800^{\circ}C)$
- Evaluated influence of creep on stresses and reliability of generic multi-cell stack designs for realistic operating temperatures

End of Life (EOL) 3D Stack Evaluations

- Evaluated 40k hour end of life (EOL) condition and mechanical reliability of 15 cell co- and counter-flow stacks experiencing mechanical creep
- Creep relaxation caused redistribution of stresses for both flow configurations that increased failure probabilities at the bottom cells of the stack
 - Potential for long-term damage in end cells nearest the load frame

Overview: Damage **Progression**

Technical Challenge

• Weibull analysis predicts 100% failure probability for components with localized (corner, edge) rupture. A better evaluation is needed for reliability predictions

Modeling Objective

• Predict progressive damage of SOFC electrode and evaluate long-term reliability

Technical Approach

- Investigate progressive damage models in literature and commercial FEA
- Develop and implement a *continuum brittle damage* mechanics constitutive model and validate with literature or experimental data.
- Evaluate progressive damage of electrodes in single and multicell stacks for reliability

Recent Accomplishments

- Reviewed literature damage models for materials
- Implemented prediction of mechanical properties as a function of porosity
- Implemented a continuum damage mechanics model in FEA to evaluate damage evolution in the anode, electrolyte, and cathode layers
- Implemented a smeared crack model in FEA to evaluate damage evolution in the anode

Damage Models for SOFC Cell Materials

- Continuum Damage Mechanics (CDM)
 - Constitutive theory that describes the progressive loss of material integrity due to the propagation and coalescence of micro-cracks, micro-voids, and similar defects
 - Voids, microcacks and pores are modeled as ellipsoidal inclusions and negligible stiffness in an Eshelby-Mori-Tanaka approach (EMTA) formulation averaged over all possible orientations
 - Typically phenomenological but focusing on *mechanistic* approach
- Smeared Crack Model (SCM)
 - Accounts for highly oriented nature of cracking (anisotropic nature) of the damaged stiffness and compliance matrices)
 - Considers both Mode-I (normal) and Mode-II (shear) resistances
 - Appropriate for quasi-brittle materials such as concrete or rock under predominantly tensile loading
 - Typical crack initiation based on maximum principal stress

 $\sigma = E\varepsilon^e \qquad \varepsilon = \varepsilon^e + \varepsilon^c$

Continuum Damage Mechanics (CDM) Model

- Stiffness reduction law as a function of the void volume for porous material
- Develop constitutive relations and damage evolution laws
- Implement in FEA with stiffness reduction technique at a critical damage level

Porosity Effect on Elastic Moduli

Ni/YSZ Strength Reduction Due to Damage

Poster: Progressive Damage in Planar Solid Oxide Fuel Cell Electrode Materials (Naveen Karri)

Smeared Crack Model (SCM)

- Degradation due to cracking represented without discrete crack modeling
- Considers reduced strengths in compression, tension and shear after cracking
- Easy to implement with fewer material parameters than the CDM model, this model is used often for modeling brittle damage in concrete structures

Predicted Temperature

Anode Crack Density

k modeling ar after cracking M model, this uctures

Thank you

