Development of Accelerated Test Protocols and Investigation of Cathode/Electrolyte Interfaces

Xiao-Dong Zhou

Stuller Endowed Chair Director of Institute for Materials Research and Innovation University of Louisiana at Lafayette Lafayette, LA 70503 Email: zhou@louisiana.edu

Program Manager

Rin Burke Jason Montgomery DE-FE0026097 DE-FE0031667

Highlights of the Accomplishments

- 1. Role of the interlayer chemistry on the cathode performance The chemistry of doped ceria buffer is of critical importance in determining the activity and stability of cathode. The addition of Pr into the doped ceria interlayer, e.g. (Pr,Gd)-doped CeO₂, improves the stability and activity for nickelates, LSCF, and LSM.
- 2. Phase transition during the electrochemical operation Introduced the role of electrochemical operation on the chemical activity and structural stability in cathodes.
- 3. Accelerated test protocols (ATPs)

More than 200 single cells were examined to develop reproducible and relevant accelerated test protocols for solid oxide fuel cells. **The following parameters were studied: current density, operation temperature, moist level, sintering temperature, accelerated test frequency, operation time, and cathode composition.** These measurements enable a systematic and quantitative analysis of the applicability of accelerated test protocols, which can be adopted to measure all type of cathodes.

Role of Interlayer on the Phase Evolution - Case of Nickelates

Performance Stability vs. Interlayer Chemistry – Case of Nickelates

Points to take:

- Multiple cells for each condition for both PNO and PNNO electrodes
- 3x reduced performance degradation in PNO/PrO_x cells.
- Stable operation was measured on multiple sets of cells and cathode compositions with the (Pr,Gd) doped CeO₂ (PGCO) interlayer.
- ≻ Reduced R_{pol} (↑MIEC → ↑ σ_e) due to extended rxn. zone.
- > Reduced Rohm (\downarrow Rgb with [Pr] \uparrow)¹

Summarized ASR vs. GDC cells.

ASR	Ohmic	Electrode	Total
PrOx-GDC 500 th hour	7%↓	22%↓	15%↓
PGCO 500 th hour	16%↓	28%↓	22%↓

¹S. Lübke et al. SSI, **117**, p.229 (1999).

- P_{1C} at ~ 0.1 Hz, related to gas transport in LSCF electrodes. Infiltrated electrode shows a higher resistance than the one without infiltration with the same ceria interlayer.
- P1A determined by the gas diffusion at the anode; while P2C strongly dependent on the oxygen reduction reaction kinetics, which can be promoted by PrOx infiltration.
- Peaks P2A at ~ 1 kHz, strongly affected by p(H₂O) in the anode gas and related to hydrogen oxidation kinetics in Ni/YSZ anode.
- P3 at 10 kHz can be related to high frequency cathode process.

- PGCO interlayer can suppress the ohmic degradation. By replacing the GDC layer with a PGCO layer, the ohmic polarization reduces from 0.016 $\Omega \cdot \text{cm}^2$ to 0.01 $\Omega \cdot \text{cm}^2$.
- PrOx provides additional active sites for ORR in LSCF. The infiltration of PrOx to LSCF backbone leads to a decrease of R_{pol} from 0.02 Ω·cm² to 0.014 Ω·cm² at the 400th hour.
- The increasing R_{pol} of the infiltrated electrode likely due to the coarsening of infiltrated catalysts.

- The existence of a ceria interlayer affects the initial performance of LSM-based cells.
- By applying PGCO and GCO interlayer, the initial current density at 0.7 V increases.
- PGCO interlayer may provide extended triple phase boundaries for the oxygen reduction and lowers the cell resistance.
- The interlayer chemistry plays a significant role on the activation process of the LSMbased electrode.

Phase Transition of Nickelates in a Reducing Condition

A Brief Summary of Accelerated test Protocols (ATP)

Operating conditions	Comments, Ohmic ASR and Power		H ₂ O%	250	600	1100
Operating conditions	Density (PD)	air	hour	hour	hour	
Hold $\otimes 0.500 \mathrm{cm}^{-2}$	Baseline, low current (J)	Ohmic	0.6	1.9	2.6	4.5
		PD		1.3	2.3	3.6
Hold \otimes 1.0 Acm ⁻²	Baseline, high current (J)	Ohmic	0.6	2.9	3.5	7.5
		PD		1.8	4.0	6.5
ATD_2	Low J	Ohmic	0.6	11.0	13.7	18.2
AIT-2		PD		4.2	8.4	13.3
ATD_2	Low J	Ohmic	0.6	14.4	18.5	22.0
AIT-2		PD		4.2	8.3	13.2
ATP_1	High J	Ohmic	0.6	17.0	24.1	31.2
		PD		5.6	11	17.4
ATP_1	High J	Ohmic	0.6	16.0	26.5	36.0
		PD		5.6	11	17.5
ATD_3	High J	Ohmic	0.6	8.4	10.1	14.0
AIF-5		PD		2	4.5	7.8
ATD_3	High J	Ohmic	0.6	7.9	10.3	14.4
All-2		PD		2.3	5.0	8.2
	High J, wet air	Ohmic	3.0	20.1	31.5	39.5
		PD		9.2	18.9	23.1
Hold @ 1.0 A cm^{-2}	Constant & high J, wet air	Ohmic	3.0	5.3	7.1	9.2
		PD		1.8	3.6	5.2
ATD_5	Fast cycle; high J, dry air	Ohmic	0	9.4	18.4	21.6
AIT-5		PD		4.4	7.6	9.9
Hold ¹ ∂ 1.0 Λ cm ⁻²	Constant & high J, dry air	Ohmic	0	1.1	2.9	3.9
		PD		1.1	1.4	1.4

Reproducible Cell Performance Under the Steady-State Operation

Accelerated Increases in Ohmic Resistance

Accelerated Measurements at a New Location

- > The accelerated test protocols were adopted at various locations.
- The following parameters were studied: current density, operation temperature, moist level, sintering temperature, accelerated test frequency, operation time, and cathode composition.
- ➢ Results were reproducible.

Ohmic Resistance During the Accelerated Tests

Steady-state operation: the role of J on ohmic loss is small initially, but increases with time

Strong correlation of J and ohmic change (Sr segregation) during accelerated test

~ 7x larger degradation for fast cycling at 1.0 A/cm2 vs. constant current (process accelerated ~7x)

Effect of Operating Temperature on the Accelerated R_{ohm}

Accelerated Sr Segregation

- 1. An example cross-sectional image of LSCF-based cells. Analysis was done at the GDC/YSZ interfaces.
- 2. Sr concentration at the interfaces as a function of time in various operation conditions

Effect of Humidity on the Applicability of Accelerated Test

Role of Humidity and GDC Porosity on the Applicability of Accelerated Test

- Humidified air on cathode side promotes an increase in ohmic loss. (faster degradation within first ~300h)
- Additional strontium species deposits at YSZ interfaces when humidified air is used, leading to an increase in ohmic loss.
- A dense interlayer may suppress the performance degradation. More post-analysis is being carried out to establish the microstructure-property relationship.

Team Members Contributing to This Presentation

Dr. Emir Dogdibegovic

Dr. Nengneng Xu

Development of High Efficiency Cathodes and Accelerated Test Protocols for SOFCs

Xiao-Dong Zhou

Stuller Endowed Chair Director of the Institute for Materials Research and Innovation University of Louisiana at Lafayette Lafayette, LA 70503 Email: zhou@louisiana.edu

Program Manager

Rin Burke Jason Montgomery DE-FE0026097 DE-FE0031667

