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• What drives microstructural change in LSM*-based SOFC 
cathodes during operation? 

• Temperature •  Current density ← DE-FE0023476

• Cathode atmosphere  ← current project
(DE-FE0031189)

• Studying long-term performance loss in shorter time frames: 
Testing under aggressive conditions 
• Show effects of non-ideal operating conditions 
• Replicate effects of much longer conventional operation? 

• What role does Mn excess play in these effects? 

*) LSM: lanthanum strontium manganite

Background



Overall objectives

• Monitor changes in performance and microstructure

• Seek correlations between 

• composition •   microstructure 

• performance •   operating conditions

and obtain mechanistic understanding of their interrelationships

• This presentation emphasizes progress in electrochemical 

characterization



• Measures of performance studied: 

• Change in area specific resistance (ASR) during extended testing 

• I–V curves (linear sweep voltammetry, LSV)

• Electrochemical impedance spectroscopy (EIS) analysis

Background

every 
24–48 h

Equivalent circuit modeling 
— Nova, Circle Fit

Distribution of relaxation times 
(DRT) — DRTtools



This study:

• Durability and aging tests 

• Conventional or aggressive

conditions

• LSV sweeps and EIS runs ⇒
current cycling every 24 h

Button cells: 

• 8YSZ electrolyte   •   Ni/8YSZ anode 

• Cathodes: porous LSM / 8YSZ  
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• (La0.85 Sr0.15)0.90 MnO3±δ (LSM 85-90) — 11% Mn excess 

• (La0.80 Sr0.20)0.95 MnO3±δ (LSM 80-95) — 5% Mn excess 

• (La0.80 Sr0.20)0.98 MnO3±δ (LSM 80-98) — 2% Mn excess

Cell specifications; testing conditions



Test fixture for controlled cathode atmosphere

Gas inlet

Exhaust hole

Thermocouple

Electrode leads



New results: 1,000-h aggressive durability test in air, LSM 85-90 

• 11% Mn excess (LSM 85-90), thin electrolyte, 1,000 °C, 760 mA cm–2

• 0 – 430 h: normal output; moderate degradation (37.7% per kh) 

• 430 – 500 h: sharp, erratic drops, with periods of normal voltage 

• 500 – 650 h: OCV (zero current) 

• 650 – 1,008 h: resume load 

• Moderate degradation 
(23.5% per kh) 

• Overall excellent performance: 

• 858 h at 760 mA cm–2

• Initial total ASR 0.25 Ω cm2

(~best in this project) 

• Final total ASR 0.30 Ω cm2

comparable to best results of 500-h tests



• EIS, 24 – 1,008 h, 1,000 °C, 0.76 A cm–2

New results: 1,000-h aggressive durability test in air, LSM 85-90 

Steady, small ↑ in Z´ & Z˝ as t ↑ All major loss peaks ↑ as t ↑

charge 
transfer 
at TPB

oxygen 
exchange

gas 
diffusion

• Gradual degradation across all aspects of cell performance
• Microstructural analysis underway



DRT analysis at 850 & 800 °C  
after 0, 504, and 1,008 h testing 
at 1,000 °C 

• As t ↑ :
• All major peaks ↑ , more 

pronounced than at 1,000 °C
• Peak separation in middle 

frequencies (10–3 < ! < 10–2 s, 
10–1 < ! < 102 s) 

• As T ↓ : 
• All major peaks ↑
• Shift of oxygen exchange

peak to longer !
• In low H2, 800 °C, as t ↑: 

• Charge transfer losses ↓
• Gas diffusion losses ↑ and

shift to higher !

New results: 1,000-h test in air, LSM 85-90, 0.76 A cm–2

charge 
transfer 
at TPB

oxygen 
exchange gas 

diffusion



• 0 – 19 h, 10% O2: ASR ↑ (data not 
shown) 

⇒ Degradation at low pO2, zero load

• 19 – 187 h: lab air, 20 sccm

• ASR ↓ for ~100 h 
— “repair” of degradation? 

• … then ASR ↑
— “normal” thermal degradation? 

• 187 – 500 h: 10% O2

• Z´ ↑ to 304 h, then ↓

• Z´ ↑ remained higher than in air 

New results: aging test, LSM 80-98, 900 °C, 10% O2, 0 A cm–2

10% O2air



New results: aging test, LSM 80-98, 900 °C, 10% O2, 0 A cm–2

• 0 – 19 h, 10% O2: ASR ↑

• 19 – 187 h: lab air, 20 sccm
• ASR ↓ for ~100 h 
• … then rose

• 187 – 500 h: 10% O2

• overall: ASR ↑ , power ↓

• EIS fitting (equivalent circuit): 
• R, LSV agreed with total 

RT,EIS from EIS fitting 
• Series RS,EIS tracked total 

resistance R,LSV
• Parallel RP,EIS unchanged



At t = 0, 10% O2, as T ↓ : 
• All major peaks ↑
• Charge transfer shifts to shorter !
• Oxygen exchange shifts to

longer !

New results: aging test, LSM 80-98, 900 °C, 10% O2, 0 A cm–2

charge 
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exchange

gas 
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As t ↑ at 10% O2, 900 °C: 
• Most major peaks ↑
• Charge transfer shifts to longer !
• Complex effects in oxygen 

exchange and gas diffusion 
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Rs Rp,hf Rp,lf

overlap ASREIS
= Rs + Rp,hf + Rp,lf

– overlap

Rs Rp

ASREIS 
= Rs + Rp

-Z’’ -Z’’

Z’ Z’

Fitting an arc with a single semicircle Fitting multiple arcs with overlapping semicircles

Equivalent circuit modeling



• ASR EIS is the sum of the gray, orange, and green, minus red curves.

• ASR EIS gave good agreement with ASR DC from durability testing:

• ±0.02 Ω cm2 for 11% Mn xs • ±0.03 Ω cm2 for 5% Mn xs

• – 0.06 Ω cm2 for 2% Mn xs (effect of inductive component)

• ASR DC ↑ as t : from series resistance RS, not from Rp

• Rp,Ca was a minor component of total ASR EIS ⇐ high T (1,000 °C)

Effect of Mn excess: 1,000 °C, 0.760 A cm–2, air

LSM 85-90 
(11% Mn excess)

LSM 80-95 
(5% Mn excess)

LSM 80-98 
(2% Mn excess)



• LSM 85-90: 

• Thicker electrolyte ⇒ anomalously high RS

• Even when corrected to thinner electrolyte, these cells had highest ASR

• On normal electrolyte, LSM 85-90 lasted 1 kh (earlier slides), lower 
ASR after 1 kh than LSM 80-95 and LSM 80-98 after 500 h 

• LSM 80-95: 

• Distinct anode (high-f) and cathode (medium-f) parallel resistances 

• Moderate ASR overall

• LSM 80-98: lowest overall ASR in 500-h comparisons 

Effect of Mn excess: 1,000 °C, 0.760 A cm–2, air

LSM 85-90 
(11% Mn excess)

LSM 80-95 
(5% Mn excess)

LSM 80-98 
(2% Mn excess)



Reproducibility: LSM 85–90, 1,000 °C, 0.760 A cm–2, air

• ASR EIS gave good 
agreement with ASR DC 
(~ –0.04 Ω cm2). 

• ASR EIS gave excellent 
agreement with ASR DC 
(± 0.01 Ω cm2). 

~20% difference in total ASR (0.1 Ω cm2) between identical cells



• All ASR components rose ~50% at 900 °C vs. 1,000 °C

• All ASR components rose with t, but more strongly at 900 °C

• High frequency: inductive component ⇒ lower ASR EIS vs. ASR DC

• ASR EIS and ASR DC still agree within 0.06 Ωcm2

Aggressive vs. conventional: LSM 80–98 (2% Mn xs)

1,000 °C, 760 mA cm–2, air 900 °C, 380 mA cm–2, air



Conclusions (prior project): ASR, microstructure, EIS

• EIS analysis: a complement to durability testing

• Equivalent circuit modeling

• EIS ASR tracks DC ASR closely 

• Rise in R s accounts for rise in ASR 

• Low-frequency R p (usu. assigned to cathode) was not the major 
source of ASR at 1,000 °C — expected at high T

• Distribution of relaxation times (DRT modeling)

• All major loss mechanisms ↑ as time ↑

• All major loss mechanisms ↑ as temperature ↓

• Enables resolution of mechanisms at different frequencies 

• In 10% H2 (anode), charge transfer losses dropped, while gas 
diffusion losses rose and shifted to lower frequencies
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