Cost-effective, Thin-film SOFCs for Reliable Power Generation

PI: Fanglin (Frank) Chen

Co-PIs: Kevin Huang (University of South Carolina) Greg Tao (Chemtronergy LLC)

- **Project Title**: Cost-effective, Thin-film SOFCs for Reliable Power Generation
- Award No: DE-FE0031670
- **Project Period**: 8/17/2018—8/16/2020
- **Project Manager**: Dr. Venkat Venkataraman

Fanglin (Frank) Chen (PI) Kevin Huang (Co-PI)

Chemtronergy LLC

Greg Tao

Objective:

The overall objective of the proposed work is to develop an advanced SOFC technology that cost-effectively and reliably generates electricity for distributed and central generation applications. The proposed innovative technology will be built-on a planar metal-supported SOFC (MS-SOFC) through a cost-effective phase-inversion tape-casting and APS-based manufacturing process.

Project Goals:

- Fabrication of porous metal substrates with graded porosity using a phaseinversion tape-casting process.
- Development of atmospheric plasma spray (APS) process for depositing all active layers, including anode, electrolyte and cathode, supported on a porous metal substrate.
- Characterization of the metal-supported SOFCs to achieve high performance and stability.

Background

Project objectives and work progress

- Preparation and optimization of metal support
- Preparation of metal supported SOFC(MS-SOFC)
 - Deposition of ScSZ-NiO anode
 - Deposition of ScSZ electrolyte
 - Deposition of LSCF cathode

G Summary

Ongoing and future work

Acknowledgements

Fig. 1.Schematic representation of anode-supported cell (ASC) and metal-supported cell (MSC).

Fig.2. (a) Ideal and actual fuel cell voltage/current characteristics; (b) Schematic diagram of H_2 and H_2O diffusion in the anode substrate.

Background – Open Porous Microstructure from Phase-Inversion Tape Casting

Fig. 3. A) Schematic diagram of the phase-inversion tape casting process; B) Cross-sectional SEM image of the metal support, and C) 3D X-ray computed tomography image of the porous metal support

Electrochem. Commun. 2015, 61, 106-109

Project Goal 1 – Preparation of Porous Metal Support using Phase-Inversion Tape-Casting Process

Fig.4.(a) The SEM morphology of 430L powders (D50=10 μ m); (b) XRD patterns of 430L powders and as-prepared metal support after sintering.

Variation of the Metal Substrate Slurry Composition for Phase Inversion Tape Casting

Composition of the casting slurry

	Compositio			
NMP	PESf	PVP	430L	NMP:PESf:PVP
28	5.6	1.4	65	5:1:0.25
24	4.8	1.2	70	5:1:0.25
20	4	1	75	5:1:0.25
21.18	7.06	1.76	70	3:1:0.25
22.86	5.71	1.43	70	4:1:0.25
23.48	5.22	1.30	70	4.5:1:0.25
24.83	4.14	1.03	70	6:1:0.25

Fig.5. Rheological properties of the slurry derived from different solid loading. (a) Viscosity vs shearing rate. (b) Viscosity vs solid loading.

When the solid loading reaches a critical value (~70%), further increase in the solid loading will result in a sharp increase in the slurry viscosity

Fig.6. (a) Gas permeability and (b) porosity of the metal supports heat-treated at 520 °C for 1 h in air and then sintered at 1280 °C for 3.5 h in $5\text{vol}\%\text{H}_2/95\text{vol}\%\text{N}_2$.

Effects of the Solid Loading on the Microstructure of the Metal Support Fabricated using Phase-Inversion Tape-Casting

Cross sectional SEM of the metal support (PESf:NMP=1:5)

Fig.7. Cross-sectional SEM images of the as-obtained the metal supports with different metal powder loading in the slurry. (a) 65wt.%, (b) 70 wt.%, (c) 75 wt.%

The as-obtained porous metal support derived from the slurry with the solid loading of 70 wt.% has thinner sponge layer and more channels, which can improve the permeability and porosity of the corresponding metal support.

Fig.8. Rheological properties of the metal slurry derived from different binder contents. (a) Viscosity vs shearing rate. (b) Viscosity vs binder contents.

When the binder contents reach a critical value (~5.22%, PESf:NMP=1:4.5), further increase in the binder content will result in a sharp increase in the slurry viscosity

Fig.9. (a) Gas permeability and (b) porosity of the metal supports heat-treated at 520 °C for 1 h in air and then sintered at 1280 °C for 3.5 h in $5vol\%H_2/95vol\% N_2$.

Effects of Binder Contents on the Porous Metal Support Microstructure

Cross sectional SEM of metal support (70 wt.% metal powder solid loading)

Fig.10. Cross-sectional SEM images of the as-obtained the metal supports. (a) 1:3, (b) 1:4, (c) 1:4.5, (d) 1:5, (e) 1:6.

When the ratio of PESf and NMP is 1:4.5 in the slurry, the as-prepared metal support has the desired microstructure, beneficial for the permeability and porosity. 16

Project Goal 2 – Fabrication of Thin-film Anode, Electrolyte and Cathode Layers using Atmospheric Plasma Spraying (APS)

Fig.11. Schematic diagram of APS.

IEEE Transactions on Plasma Science 2016, 45(2), 318-322

17

Characterization of the Anode, Electrolyte and Cathode Powders for APS

Fig.12. The SEM morphology and XRD patterns of different powders for APS. (A-a) NiO-ScSZ, (B-b) ScSZ, (C-c) LSCF.

Parameters for Deposition of the ScSZ-NiO Anode and ScSZ Electrolyte using APS

Spray parameters

Parameters	NiO-ScSZ	ScSZ
Operating power (kW)	24	40
Primary gas flow rate (L min ⁻¹)	60	60
Secondary gas flow rate (L min ⁻¹)	6	6
Powder feed rate (g min ⁻¹)	2.5	2.5
Spraying distance (mm)	150	70/100/150
Spraying times	4	8

Effect of Spraying Distance on the Microstructure of OCV of the Half Cell

Fig.13. OCV versus time and cross-sectional SEM images for half cells with the electrolyte spraying with various distance. (A-a) 70 mm, (B-b) 100 mm, (C-c) 150 mm. **Dense ScSZ electrolyte was successfully prepared under 70 mm spraying distance**

Spray parameters

Parameters	NiO-ScSZ	ScSZ	LSCF
Operating power (kW)	24	40	6/7.5/9
Primary Argon flow rate(L min ⁻¹)	60	60	60
Secondary gas flow rate(L min ⁻¹)	6	6	6
Powder feed rate (g min ⁻¹)	2.5	2.5	2.5
Spraying distance (mm)	150	70	150
Spraying times	4	8	8

Cross sectional SEM of MS-SOFC

Fig.14. Cross-sectional SEM images of cathode layer for different cells. (a) 6 kW, (b) 7.5 kW, (c) 9 kW.

With improving the operating powder for depositing the cathode, the thickness of the cathode layer increases and porosity of the cathode layer decreases.

✤ Spray parameters

Parameters	NiO-ScSZ	ScSZ	LSCF
Operating power (kW)	24	40	6
Primary Argon flow rate(L min ⁻¹)	60	60	60
Secondary gas flow rate(L min ⁻¹)	6	6	6
Powder feed rate (g min ⁻¹)	2.5	2.5	2.5
Spraying distance (mm)	150	70	150
Spraying times	4	8	4/8/12

Effect of Spraying Times to Fabricate the Cathode

Cathode layer thickness $\sim 12 \ \mu m$

~20 µm

~35 µm

Fig.15. Cross-sectional SEM images of cathode layer for different cells with the cathode fabricated with different spray times. (a) 4 times, (b) 8 times, (c) 12 times.

Increasing the number of spray times to deposit the cathode, the thickness of the cathode layer increases while the porosity of the cathode layer decreases

Project Goal 3- Characterization of the Metal-Supported SOFCs to Achieve High Performance and Stability

Fig.16. Current–voltage characteristics and the corresponding power densities for MS-SOFCs with LSCF cathode from different APS power. (a) 6 kW, (b) 7.5 kW, (c) 9 kW.

	Operating Power(kW)					
T(°C)	6		7.5		9	
	OCV (V)	Pmax(mW cm ⁻²)	OCV (V)	Pmax(mW cm ⁻²)	OCV (V)	Pmax(mW cm ⁻²)
700	1.03	1114	1.04	861	1.02	544
650	1.04	583	1.05	460	1.03	302
600	1.05	305	1.06	224	1.04	141

Table 1. OCV and maximum p	ower density of MS-SOFCs.
----------------------------	---------------------------

25

Effect of Operating Power to Fabricate LSCF Cathode

Table 2. Ohmic (R_{Ω}) and interfacial polarization (R_P) resistance of MS-SOFCs with cathode fabricated with different APS power.

	Operating Power(kW)						
T(°C)		6		7.5	9		
	$R_{\Omega}(\Omega cm^2)$	$R_p(\Omega cm^2)$	$R_{\Omega}(\Omega cm^2)$	$R_p(\Omega cm^2)$	$R_{\Omega}(\Omega cm^2)$	$R_p(\Omega cm^2)$	
700	0.12	0.18	0.19	0.2	0.18	0.43	
650	0.21	0.39	0.34	0.46	0.32	0.84	
600	0.33	1.0	0.61	1.22	0.59	2.2	

Lowering operating power can significantly enhance cell performance

Fig.17. Impedance spectra of MS-SOFC **en** measured from 600-700 °C. (a) 6 kW, (b) 7.5 kW, (c) 9 kW.

Effect of Spraying Times for the Cathode on Cell Performance of the MS-SOFCs

Fig.18. Current–voltage characteristics and the corresponding power densities for MS-SOFCs. (a) 4 times, (b) 8 times, (c) 12 times.

	Spraying times					
T(°C)	C(°C) 4		8		12	
	OCV (V)	Pmax(mW cm ⁻²)	OCV (V)	Pmax(mW cm ⁻²)	OCV (V)	Pmax(mW cm ⁻²)
700	1.04	680	1.03	1114	1.06	990
650	1.06	358	1.04	583	1.07	567
600	1.07	183	1.05	305	1.08	293

Table 3. OCV and maximum power density of MS-SOFCs.

27

Effect of Spraying Times for the Cathode on Cell Performance of the MS-SOFCs

Fig.19. Impedance spectra of MS-SOFC measured from 600-700 °C. (a) 4 times, (b) 8 times, (c) 12 times.

Table 4. Ohmic(R_{Ω}) and interfacial polarization (R_P) resistance of various MS-SOFC.

	Spraying times						
T(°C) 4			8		12		
	$R_{\Omega}(\Omega cm^2)$	$R_p(\Omega cm^2)$	$R_{\Omega}(\Omega cm^2)$	$R_p(\Omega cm^2)$	$R_{\Omega}(\Omega cm^2)$	$R_p(\Omega cm^2)$	
700	0.19	0.30	0.12	0.18	0.16	0.2	
650	0.31	0.65	0.21	0.39	0.26	0.43	
600	0.55	1.53	0.33	1.0	0.44	1.14	

Interface resistance significantly decreases when the spraying of 8 times is used to fabricate the cathode

Summary

- Porous metal support with open channel porous microstructures and graded porosity has been obtained using phase inversion tape casting method.
- Thin film anode, electrolyte and cathode has been successfully deposited on porous metal support using the APS process.
- Optimizing the parameters of APS can significantly enhance the electrochemical performance of MS-SOFCs.

Ongoing and Future Work

• Optimize the processing parameters to improve the cell performance.

• Evaluate the performance stability of MS-SOFCs.

• Fabricate and characterize large size MS-SOFCs.

Acknowledgements

- The financial support from the U.S. Department of Energy, Office of Fossil Energy (DE-FE0031670) is gratefully acknowledged.
- We thank Dr. Patcharin Burke, Dr. Venkat Venkataraman, Dr. Shailesh Vora, as well as the entire NETL SOFC team for guidance of this work.