

Summary of SOFC Development at Redox Power Systems

07/10/2020

U.S. Department of Energy, National Energy Technology Laboratory's (NETL) 21st Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting

Redox Key Contributors: Bryan Blackburn, Luis Correa, Colin Gore, Stelu Deaconu, Ke-ji Pan, Johanna Hartmann, Yue Li, Lei Wang

REDOX POWER SYSTEMS, LLC

- **1. FE0026189:** High power, low cost solid oxide fuel cell (SOFC) stacks for robust and reliable distributed generation
- **2. FE0027897:** Red-ox robust SOFC stacks for affordable, reliable distributed generation power systems
- **3. FE0031178:** High throughput, in-line coating metrology development for SOFC manufacturing
- **4. FE0031656:** Sputtered thin films for very high power, efficient, and low-cost commercial SOFCs

1. Redox Cells & Stacks

1.0

Gen-1 Cell

1.0

0.8

0.6

0.4

0.2

0.0

20 18

16

Λ

0

0.0

0.5

~650 °C

Cell Voltage (V)

- •GDC electrolyte cell shows good performance at lower operating temperatures
- •Established manufacturing for 10 cm by 10 cm cells

2 single cell tests

(10 cm by 10 cm)

1.0

40

Power Density (W/cm²

0.8

0.6

0.4

0.2

•Gen-1 cell used in this project's larger stacks

~650 °C Cell #1 (diamonds)

Gen-2 Cell

2.0

- Optimized anode offers higher performance over Gen-1 cell
 - >1.8 times higher power density
 - > 5% higher open circuit voltage
- Scaled to 10 cm by 10 cm
- Manufacturing optimization needed

10 20 30

(REDOX) Stack Development & Natural Gas Test Facility

Summer 2019

Summer 2020

- 8+ test stations for cell/stack development testing •
- 2 large stack test stations and bench top system equipment .
- Systems development walk-in hood .
- Large pipeline natural gas feed capacity can more than support current reformer equipment for >15 kWe.
- Light manufacturing and engineering space as well •

REDOX

Large Stack Characterization & Bench Top System

Large size stack(s)

Individual or 2-Stack Module

Cathode Recuperators

Balance of Plant

Steam Reformers

Individual, Large Stack (~2.4kW) Characterization

- Bench top system BOP is on opposite side of hood from stacks
 - •Steam control
 - •Steam reformers
 - •Air delivery (shop compressor) with cathode recuperator heat exchangers
 - •Electronic load bank: >12 kW
 - •System instrumentation, control, and data logging

2-Stack Module: ~4.2 kW

Reformed, pipeline natural gas fuel with stack operation at ~600 °C

- Current-voltage-power characteristic acquired from base constant current load of 80A
- Difference in current between stacks A & B of parallel-connected module: ~6 Amps

Stack-A Time Series

- From approximately 285-420 hours, relatively minor changes in current caused power levels to fluctuate slightly (~2.5%) around 0.8 kW
- This was traced to a problem with the system safety chain and had negligible impact on the stack operating voltage, which remained essentially unchanged during operation

2. Red-ox Robust Stacks

Red-ox cycles can be expected during long-term fuel cell operation

- Interruptions in fuel supply
- Transient SOFC operation
 - System shutdown
 - Very high fuel utilization events (e.g., extreme load following)

Ni-cermet anodes prone to mechanical failure during redox cycling

~69 vol% expansion of Ni \rightarrow NiO

REDOX All-Ceramic Anode Performance

Red-Ox Cycling of Stack

Current (A)

- Slightly lower performance after red-ox cycling
 - But this may have had more to do with general long-term stability
- Discovered problems with ceramic anode delamination in high humidity conditions experienced in large format cell operation
- Extensive investigations to obtain ground truth understanding of the problem
- Problem not in the ceramic-anode material itself (confirmed in 30% H₂O, balance H₂)
- Modified ceramic-anode configuration eliminates delamination 7/10/2020 REDOX POWER SYSTEMS, LLC

REDOX Red-Ox Cycling: Improved Ceramic-Anode Config.

•Red-ox cycle conditions

 The sample was heated to 600 °C in air, held for 3 hours; reducing gas (3% H₂ / 97% N₂) was introduced and held for 3 hours; air was reintroduced

•10 red-ox cycles

- •After 10 red-ox cycles, no cracks are observed in anode surface or cross-section
- •No delamination of any layers, or any other mechanical problem

REDOX Improved Ceramic-Anode Config. Performance

- 4 cm by 4 cm cell tested at 600 °C
- Better electrochemical performance compared to the original ceramic-anode configuration of the same size
 - > 5% increase in open circuit voltage
 - >35% increase in power density
 - Additional improvements likely during final size scale-up

Cell Size & Batch Size Scaleup (REDOX)

Improved ceramic-anode cell config.

REDOX 3. Metrology for SOFC Coating Manufacture

PNNL report ID: PNNL- 17568, May 2008

Coating surface

ECS Transactions, v. 68, i. 1 (2015) 1569

Protective coating applied to the interconnect surface:

- Barrier to Cr transport from the interconnect to the electrode (prevent cathode poisoning)
- Barrier of inward oxygen migration to the interconnect (block resistive oxide film growth)

(Mn,Co)O₄ (MCO) is a commonly used barrier coating layer

Defects in coating (e.g., porosity, cracks) inhibit coating and SOFC performance

Key Defects of Interest Rating

Defect	Challenges it presents	Likelihood of occurrence (1-5)	Severity (1-5)	Level of focus (1-5)
Surface dips and/or bumps	Could be high ASR spots, Cr volatility	5	3	5
Thickness non- uniformity, >50%	Large gradients> variations in ASR and ability to block Cr transport, (growth of Cr oxide layer - > ASR)	4	3	4
Sample-to-sample loading variations	Similar to thickness non-uniformity above (measurable by mass gain)	2	3	3
Variations in film				
porosity	Same as above	2	3	4
Film delamination				
(initial)	Huge ASR, Increase in Cr volatility	1	5	1
Film delamination				
(during operation)	Huge increase in ASR, Increase in Cr volaility	1	5	2
Small Roughness,				
bumps, dips, scratches				
in substrate	possible non-uniform coatings	4	2	4
Large roughness/defects				
in substrate	non-uniform coating	1	5	1
Small scratches in film	breaches in film (most likely to occur in green			
due to handling	film)	2	5	4
mud-cracks in film	breaches in film	2	4	3
7/10/2020	REDOX POWER SYSTEMS, LLC			14

(REDOX) Metrology of Key Defects Approach

Measurement methods

- Optical microscopy
- Optical profilometry
- Thermography

Thermography in collaboration with NREL

Derek Jacobsen, Peter Rupnowski, Brian Green, and Michael Ulsh

Coating Fabrication at Redox

• Sprayed MCO coatings followed by typical annealing methods (reducing atmosphere followed by oxidation to achieve oxide coating)

SEM cross-section of an MCO coating on stainless steel developed at Redox

REDOX Thermography Detects Substrate Scratches

- Stainless steel substrate with intentionally added porosity or thin coating deposition
- Optical imaging detects more inhomogeneities in thin as compared to "defect-free" coating
- Optical profile detects roughness change of porous > "defect-free" > thin coatings

Fired coating (thermography)

- 4 scratches in stainless steel substrate
- Optical and height profile mapping can only detect two scratches in fired film
- Thermography detects all 4 scratches!

*grid is an image stitching artifact 17

7/10/2020

REDOX POWER SYSTEMS, LLC

(REDOX) Example: Quantitative Analysis of Surface Defects

Long-term ASR of "defect-free" coating exhibits reasonable performance

- ASR at ~0.037 Ω -cm² for 1000 hours (a 2nd measurement resulted in ASR ~0.048 Ω -cm² for 350 hours)
- Achieved M2.2 (<0.05 Ω-cm² for 1000 hours at 650 °C)

FE0031178

Long-term ASR of intentionally defective coatings

- Thin coating exhibits high ASR that increases from 0.06 Ω-cm² to 0.1 Ω-cm² (66%) with time
- Porous coating has low ASR, which also increases with time from 0.024 Ω-cm² to 0.029 Ω-cm² (21%)
- Porous coating exhibits a promising initial ASR, though high porosity may lead to more Cr volatilization

Evaluation of Cr Volatilization from Defective / Non-Defective MCO coatings

the samples were captured using Na-carbonate coated alumina filters placed downstream from the samples* Cr Filter With Na₂CO₃ as getter material

Filter after 500 h test with flowing humidified air over stainless steel (left) and Cr_2O_3 (right) at 750°C.

- The filters were washed with water
- The resulting color intensity was compared with the stock solutions (conc. verified via UV-Vis) to determine Cr in solution

* following methods developed by Chalmers Univ. and PNNL

Long-term Cr-Volatilization Tests

- 1022-hour anneals were performed for uncoated 400-series stainless steel samples and MCO coated 400-series stainless steel samples
- 500-hour anneals were performed for chromia and uncoated samples

Sample (750 °C)	Cr evap. rate (mg/cm²-h)	Cr evap. rate x 8 [‡] (mg/cm²-h)	
400-Series SS, 1022 hours	4.6 x 10 ⁻⁵	3.7 x 10 ⁻⁴	
MCO, 1022 hours	6.4 x 10 ⁻⁶	5.1 x 10 ⁻⁵	\langle
Cr ₂ O ₃ , 500 hours	8.4 x 10 ⁻⁵	6.7 x 10 ⁻⁴	
400-Series SS, 500 hours	6.2 x 10 ⁻⁵	5 x 10 ⁻⁴	

• While MCO reduces the amount of Cr released at 750 °C, coating defects that expose the underlying stainless steel need to be caught during QC steps in manufacturing to prevent Cr poisoning of the cathode in long-term SOFC operation.

UV-vis measurements for chromia, uncoated sample and multiple types of MCO coated samples

[‡] factor of 8 applied due to lower flow rate used (Chalmers 2017: Journal of Power Sources 343 (2017) 1; DOI: 10.1016/j.jpowsour.2017.01.045)

4. Sputtered Thin Film SOFCs

- Thin electron-blocking layer expected to increase Redox GEN1 Ni-cermet cell power density by >2x
- Electron-blocking layer eliminates electronic leakage through ceria based electrolyte → ~40% increase in open circuit voltage
- Thin-ness of electron-blocking layer adds negligible resistance
- Takes advantage of high performance Redox GEN1 cell platform

GDC Buffer Layer Deposition

GDC deposited on GEN1 SOFC sample with YSZ layer previously deposited by KDF

- Successful deposition of GDC buffer layer with over 1 $\mu\text{m}/\text{hour}$ deposition rate on lab-scale system
- Required development of pre-sputter parameters and improvement of deposition conditions (e.g., Ar and O₂ pressure and sputtering power)
- GDC film deposition still being developed to ensure deposition of dense, robust film (see next slides on oxidative stress)

REDOX Achieving ≥ 1V Open Circuit Voltage

- 2 cm by 2 cm (sputtered YSZ & GDC) cell tested with stainless steel stack components
- Gas chromatography of the exhaust gas verified good sealing
- The theoretical OCV is 1.135V at 650 °C with 3% $H_2O/97\%$ H_2 at the anode and air at the cathode
- Therefore, the observed OCV was 99.6% of theoretical OCV, confirming an effective electronblocking layer on GDC
- The OCV is stable and represents a > 30% increase over the baseline
- ASR and cell size enhancements are now being made by tuning the cell annealing and contact fabrication methods

Summary

- Individual stack of 2.4 kW and two-stack module for 4.2 kW using steamreformed, pipeline natural gas
- Expanded Redox's capabilities of cell manufacturing, stack development and testing, fuel processing, and system integration in the new, larger natural gas test facility
- Increased quality and batch-firing yield of large format, all-ceramic anode cells
- Demonstrated red-ox stability of all-ceramic anode cells and optimized anodeconfiguration for improved long-term stability and performance
- Developed optical and thermographic defect detection approaches and methods to quantify key defects on coatings for SOFC stack components (e.g. interconnect)
- Successfully demonstrated sputtered thin-film SOFC, effectively blocking electron (leakage) current, to achieve 99.6% of theoretical OCV with GDC electrolyte cell
- Continue to optimize pre-sputter parameters, deposition conditions, annealing, and contact fabrication of large-scale cells

NETL program managers Seth Lawson, Venkat Venkataraman, and Jason Montgomery

- DE-FE0026189
- DE-FE0027897
- DE-FE0031178
- DE-FE0031656

