

Probing Particle Impingement in Boilers with High-Performance CPUs & GPUs

Prof. Bryan M. Wong and Ms. Hyuna Kwon

Department of Chemical & Environmental Engineering Materials Science & Engineering Program Department of Physics & Astronomy University of California, Riverside

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Outline

- Short introduction
- > Why use Graphical Processing Units (GPUs) for particle impingement in boilers?
- Computational Fluid Dynamics (CFD) calculations with GPUs
- Particle-tracking calculations for computing erosion & accretion rates

HBCU-OMI Project at UC Riverside

- Official Hispanic Serving Institution
- > Demographics:
- 57% first-generation students to attend college

41.5% | Hispanic or Latino
33.8% | Asian
11% | White
5.6% | Two or More Races
3.4% | International
3.3% | Black or African American
1.1% | Unknown
0.2% | Native Hawaiian or Other Pacific Islander

0.1% | Native American or Alaskan Native

Designated as "top-performing institution for African American & Latino/a students" by The Education Trust – <u>1 of only 3</u> institutions in the nation

B. M. Wong

UC Riverside

Research Expertise

> Deep focus & interest in *materials & high-performance computing*

Background Information

- > Coal-fired power plants have average life span of ~40 years
 - Originally designed for 30-year life & baseline steady state operating mode
- However, many plants currently operate in cycling & load-following mode
 Peaking Loading Capacity
 - Plants not originally designed for such operations, leading to *lower efficiencies* & *faster material degradation*

 Identifying & diagnosing processes most impacted by cyclic operations is necessary for mitigating these inefficiencies

Task Summary & Project Timeline

Role of Computation

- Computation has several advantages compared to conventional physical/experimental diagnostics
 - > Experiments are expensive & time-consuming
 - > Nearly limitless number of erosion processes & power-plant control variables

- Predictive computation
 - > More cost-efficient
 - > Leads to rational & more logical approach

 Use of Graphical Processing Units (GPUs) can further accelerate computational efficiency of calculations

Graphical Processing Units (GPUs)

 Computational Fluid Dynamics (CFD) calculations in Wong group carried out on *massively-parallelized GPUs*

 Project utilizes ANSYS Fluent code with GPUs in PI's lab and DOE supercomputing facilities

How Do GPUs Work?

> GPUs comprised of thousands of computing threads that communicate with each other (red arrows) via shared memory

 Mesh points, particle positions, & velocity vectors from CFD calculations post-processed by CPU host

Hardware Support & Previous Results

 NVIDIA recently donated Titan V GPU to Prof. Wong for this project & other research

Recent Fluent benchmarks by Ms. Hyuna Kwon (Wong group)

> Significant computational savings for large geometries

Technical Background

- Erosion of machinery by high-speed particulates is ubiquitous in engineering processes
- Not easy to quantify all erosion mechanisms in one combined erosion prediction model (EPM)
- All particle motion characteristics can be monitored via coupled CFD-DPM/DEM
- Our study employs CFD-DPM and EPM to investigate erosion of boiler headers by solid-particle impact

https://www.babcock.com/resources/learning-center/finding-the-root-cause-of-boiler-tube-failure

- Schematic of boiler headers and example of erosive boiler header pipes
- Boiler header is a pipeline that transfers steam from boiler heads to plant

Boiler header

- > Boiler header must operate in dust-rich environment
- > Impact of high-speed solid particles causes serious erosion on boiler headers, preventing pipeline systems from operating safely
- > Engineers have limited capabilities to prevent these effects during boiler header operation since erosion process is invisible
- > We anticipate that CFD-DPM/DEM simulations combined with EPM can shed new light on complex erosion processes in boiler header

Governing equations

Continuity equation (mass conservation)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

> Euler's equation (momentum conservation)

$$\begin{split} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} &= \frac{\mathbf{F}}{\rho} - \frac{1}{\rho} \nabla p \\ \frac{\partial}{\partial t} (\rho u_i) + \frac{\partial}{\partial x_j} (\rho u_i u_j) &= -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} [\mu \frac{\partial u_i}{\partial x_j} - \rho \frac{\partial u_i}{\partial x_j} - \rho \overline{u'_i u'_j}] + \rho g_i + F_i \\ \text{Viscosity} & \text{Turbulence Gravity} \\ \text{(k-ϵ model)} \end{split}$$

Numerical details

- > In this study, ICEM was used to generate tetrahedral meshes and a commercial solver (ANSYS FLUENT V.20.2) was used for all numerical simulations
- > The pressure-based solver was applied, and the SIMPLE algorithm was used to correct the velocity and pressure.
- For the inlet of the calculation domain, a fixed fluid velocity was given and an 'out flow' was set on the outlet. For the fluid part, a no-slip boundary was set on the solid walls.

Optimizing mesh density

> Optimized mesh number = 500,000

Optimizing erosion model

> Erosion rate

 $ER = AF_S \nu_p^n f(\theta)$

- > A = material dependent coefficient
- F_s = particle shape constant
- f = function of impact angle

$$\begin{array}{ll} \mbox{McLaury} & f(\theta) = \begin{cases} a\theta^2 + b\theta & \theta \leq \phi \\ xcos^2\theta sin(w\theta) + y^2 sin\theta + z & \theta > \phi \end{cases} \\ \\ \mbox{Finnie} & f(\theta) = \begin{cases} acos^2(\theta) & \theta \leq \phi \\ sin(w\theta) - xsin^2(\theta) & \theta > \phi \end{cases} \end{array}$$

I. Finnie, "Erosion of Surfaces by Solid Particles." WEAR, Vol. 3, pp. 87-103, 1960.

B. S. McLaury et al. "Modeling erosion in chokes". Proceeding of ASME Fluids Eng. Summer Meeting. San Diego, California. 1996.

Benchmark calculation

- > Finnie model underestimates ER
- > McLaury model overestimates ER
- > Finnie model is more accurate, especially at high flow velocity

X. Chen, B.S. Mclaury, S.A. Shirazi, Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbows and plugged tees, Comput. Fluids 33 (10) (2004) 1251–1272.

Test on simple boiler header design

Total erosion rate = 0.342 kg/m²s Most erosion occurs near outlet due to high pressure

Optimizing design of boiler header

Serial design - Horizontal outlet

Serial design - Vertical outlet

Parallel design - Vertical outlet

Serial design – horizontal outlet

particle-tracks-1 Particle Residence Time

Max ER = $6.72 \times 10^{-5} \text{ kg/m}^2\text{s}$ Total ER = $0.0228 \text{ kg/m}^2\text{s}$

Serial design – vertical outlet

Max ER = $4.75 \times 10^{-4} \text{ kg/m}^2\text{s}$ Total ER = $0.0511 \text{ kg/m}^2\text{s}$

Parallel design of boiler header

1.28e+04 9.58e+03 6.39e+03

3.20e+03 2.26e+00

[pascal]

Max ER = 2.77 x 10⁻⁴ kg/m²s Total ER = 2.79 x 10⁻⁶ kg/m²s

Optimizing header design

- > Erosion-resistant designs of boiler header are vital
- > In this study, ANSYS FLUENT V.20.2 was utilized to calculate erosion rate of boiler header
- > McLaury equation predicts ER with best accuracy
- > Boiler header with vertical outlet is more resistant
- > Boiler header with parallel tube alignment is more resistant
- > Erosion occurs at high pressure area (near outlet)

Future plans

- > Optimize number of branched pipes (row and column)
- > Optimize angle between main pipe and tubes
- > Optimize erosion rate equation

Thank you!

- > Special thanks to NVIDIA (GPUs)
- > Supported by UCR/HBCU DE-FE0031746

