Implementing General Framework in MFiX for Radiative Heat Transfer in Gas–Solid Reacting Flows

DE-FE0030485

V M K Kotteda
Postdoctoral Researcher
University of Wyoming

David Tobin
Master Student
University of Wyoming

Michael Stoellinger
Associate Professor of Mechanical Engineering
University of Wyoming

2020 FE R&D PROJECT REVIEW MEETING, August 24, 2020
Outline

1. Project Description and Objectives
2. Project Update
3. Preparing Project for Next Steps
4. Concluding Remarks
1. Project Description and Objectives

NETL’s MFiX — Multiphase Flow with Interphase eXchange

- Central to the laboratory’s multiphase flow reactor modeling efforts
- Provides support to achieve DOE’s goals
 1. Cost of Energy and Carbon Dioxide (CO2) Capture from Advanced Power Systems
 2. Power Plant Efficiency Improvements
- Built with varying levels of fidelity/computational cost
 - Lower fidelity models for large scale reactor design
 - High fidelity models to support the development of lower fidelity models
1. Project Description and Objectives

Status of the beginning of the project

High-end validation study:

- Fine grid with 1.3M cells
- Two solid phases (coal and recycled ash)
- Detailed gasification chemical kinetic (17 gas species, 4 solid species)

What was missing the in the model?

No real radiative heat transfer modeling available in MFiX!

Driving Question/Motivation

Enhance MFiX capabilities by including models for radiative heat transfer following MFiX’s multi-fidelity approach

Results from: “Fluidized Beds – recent applications”,
W. Rogers, 215 IWTU Fluidization Workshop
1. Project Description and Objectives

MFIX-RAD development plan
- PMC + Line-by-line model (full spectral resolution ~10 million lines) -> model error free
- PMC + Weighted Sum of Gray Gases (WSGG) model

Research Models (used for benchmarking)
- P1 + WSGG model (gas & particles)
- P1 + WSGG model & gray particles

Industrial Model (main application)
- P1 + Gray gas & particle model (neglect all spectral variations)
- P1 + gray constant (neglect all spectral and spatial variations)

Usable in MFIX-TFM and MFIX-DEM!

Model uncertainty

"Basic Model"
2. Project Update

We have received a 1 year, no cost extension

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/17</td>
<td>01/18</td>
<td>04/18</td>
<td>07/18</td>
</tr>
<tr>
<td>T-1: Project Management and Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/18</td>
<td>01/19</td>
<td>04/19</td>
<td>07/19</td>
</tr>
<tr>
<td>T-2: Testing of the previously developed MFIX-RAD Radiation Model Plug-In</td>
<td></td>
<td>07/19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-3: Implementing basic radiation model within MFIX-DEM</td>
<td></td>
<td></td>
<td>07/19</td>
<td></td>
</tr>
<tr>
<td>T-4: Implementation and Verification of Industrial Models</td>
<td>10/19</td>
<td>01/20</td>
<td>04/20</td>
<td>07/20</td>
</tr>
<tr>
<td>T-5: Industrial Model Application and Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-6: Development of High-End Research Models</td>
<td></td>
<td></td>
<td>07/20</td>
<td></td>
</tr>
<tr>
<td>T-7: Comprehensive Validation and Benchmark</td>
<td></td>
<td></td>
<td></td>
<td>01/21</td>
</tr>
</tbody>
</table>

Near completion!

Done!
2. Project Update

Modeling approach

Energy equations for MFiX-TFM

Gas

\[\varepsilon_g \rho_g c_{pg} \left(\frac{\partial T_g}{\partial t} + u_g \cdot \Delta T_g \right) = \nabla q_g + \sum_{m=1}^{M} H_{gsm} - \Delta H_{rg} + H_{wall}(T_{wall} - T_g) - \nabla . \hat{q}_{rg} \]

Solids

\[\varepsilon_{sm} \rho_{sm} c_{psm} \left(\frac{\partial T_{sm}}{\partial t} + u_{sm} \cdot \Delta T_{sm} \right) = \nabla q_{sm} + \sum_{m=1}^{M} H_{gsm} - \Delta H_{rs_m} - \nabla . \hat{q}_{rs_m} \]

Single particle/parcel Energy equation for MFiX-DEM or MFiX-PIC

\[m_i c_{p,i} \frac{dT_i}{dt} = \sum_{n=1}^{N_i} q_{i,j} + q_{i,f} + q_{i,rad} + q_{i,wall} \]

Source/Sink Terms are obtained from the thermal radiation model!
2. Project Update

Modeling approach

\[
\frac{dI_\eta}{ds} = \vec{s} \cdot \nabla I_\eta = a_\eta I_{b\eta} \\
- a_\eta I_\eta \\
- \sigma_{s\eta} I_\eta + \frac{\sigma_{s\eta}}{4\pi} \int I_\eta(\vec{s}') \Phi_\eta(\vec{s}, \vec{s}') d\Omega
\]

The RTE is an integro-differential equation for the spectral intensity \(I_\eta(x, y, z, \phi, \psi, \eta) \) (a function of 6 variables!)

Solution approach:

- 3 spatial dimensions \(\vec{r}(x, y, z) \): CFD discretization
- 2 directional dimensions \(\vec{s}(\phi, \psi) \): RTE solvers
- 1 spectral dimension (\(\eta \)): spectral models
2. Project Update

Modeling approach

Gray P1 model assumptions

1) Gray participating medium (gas and solids) -> no dependence on wavenumber η

2) Use a “Fourier series” ansatz $I(\vec{r}, \vec{s}) = \sum_{l=0}^{\infty} \sum_{-l}^{l} I_l(\vec{r}) \cdot Y_l(\vec{s})$ — Spherical harmonics

Spatially varying coefficients

3) Keeping only the first term $l = 0$ leads to the P1 approximation

4) Solve a “combined” (including all phases) P1 equation for G (Helmholtz type)

$$ \nabla \cdot (\Gamma \nabla G) + 4\pi \left(a_g \frac{\sigma T^4}{\pi} + E_s \right) - (a_g + a_s)G = 0 $$

Gas phase absorption

$$ \Gamma = \frac{1}{3(a_g + a_s + \sigma_s) - C\sigma_s} $$

Solid phase absorption

Gas phase emission

Solid phases emission
2. Project Update

Modeling approach

Distributing the source terms with P1

\[\nabla \cdot (\Gamma \nabla G) + 4 \pi \left(a_g \frac{\sigma T^4}{\pi} + E_s \right) - (a_g + a_s)G = 0 \]

Continuous phase

\[-\nabla \cdot q_{rg} = a_g G - 4a_g \sigma T_g^4 \]

Dispersed phase m (M total)

\[-\nabla \cdot q_{rs,m} = a_{s,m}(G - 4\sigma T_{s,m}^4) \]

Spectral models for \(a_g \)

- “gray constant” \(a_g = const \) (user input)
- “gray” => Planck mean absorption using \(CO_2 \) and \(H_2O \)
- “gray and non-gray” WSGG based on \(CO_2 \) and \(H_2O \)

Spectral models for \(a_{s,m} \)

- “gray constant” based on constant emissivity and diameter of particles
- “gray” based on Buckius-Hawang correlation (depends on refractive index, mean particle size, void fraction and temperature)
- “gray and non-gray” WSGG
2. Project Update

Modeling approach

Weighted Sum of Gray Gas (WSGG) model

- Derived by fitting model coefficients such that total emissivity in a 1-d slab of gas matches full spectral result
- Typically 4-5 gray gases are sufficient

Gray WSGG model

The mean absorption coefficient is

\[
\alpha_g = \frac{\ln(1 - \varepsilon)}{L}
\]

The total emissivity of a H$_2$O/CO$_2$ mixture is

\[
\varepsilon = \sum_{i=0}^{N_g} k_i (1 - e^{-a_i P (X_{H2O}+X_{CO2})L})
\]

Path length either defined as \(L = \frac{3.6V}{A} \) (mean beam length) or as \(L = V_{cell}^{1/3} \) (results are mesh dependent!)

Non-gray WSGG model

Solve \(N_g \) “gray-gas” equations i.e. for the \(i \)th gray gas

\[
\nabla \left(\Gamma \nabla G_i \right) + 4 \pi \left(a_g \frac{\sigma T^4}{\pi} + E_s \right) - (a_g + a_s) G = 0
\]

The weighting factors are given by

\[
k_i = \sum_{j=0}^{N_k} b_{i,j} T^j
\]

The source terms are then given by

\[
-\nabla \cdot q_{rg} = \sum_{i=0}^{N_g} a_i G_i - 4a_i k_i \sigma T^4
\]

L is not needed!!!
2. Project Update
Modeling overview

Start
- Initialize computations
- Decompose the domain
- Compute various terms/fluxes in equations for the fluid phase
- Apply BC and solve the system of equations for fluid variables

TFM
- Compute various terms/fluxes in equations for solid phases
- Apply BC and solve the system of equations for solid phase variables

DEM
- Output

PIC
- Calculate S_r, the source/sink term due to thermal radiation

PMC
- RTE
- P1
- Planck mean absorption

Continuous phase
- Constant-Gray
- Gray
- Gray-WSGG
- NonGray-WSGG

WSGG models
- Taylor
- Smith
- Johansson
- Kangwanpongpan
- Krishnamoorthy
- Yin
- Dorigon
- Bordbar
- Guo
- Shan

Dispersed phase
- Constant-Gray
- Gray
- Gray-WSGG
- NonGray-WSGG

Buckius-Hwang correlation

Stop
- Finished time steps
2. Project Update

T4: Implementation and Verification of Industrial Models

- 3D Steady, single phase, gray
- Radiation model: P1, WSGG – SMITH82
- $L = 1.44$ (3.6 V/A, based on domain) optical thickness = 0.49
- $X_{H_2O} = 0.2$; $X_{CO_2} = 0.1$; $p = 1.0$ atm
- Mesh: 17x17x34

Verification of gray-WSGG implementation by comparison with ANSYUS-FLUENT results

Verification of non-gray WSGG implementation by comparison with results reported in Literature
Gray and non-gray WSGG models implemented correctly, which one should we use as “Industrial Model”? Problems with the gray-WSGG

- Results strongly depend on the choice for L
- Results differ from non-gray result

We prefer the non-gray version as our “Industrial Model” since it does not require arbitrary choice for L!

Further analysis of this choice will be provided in Task 7!
13MW Power Systems Development Facility (PSDF) gasifier

- Mesh with 4M cells
- Chemistry based on 17 gas species, 4 solid species

Outlet
x = 0.5, y = [7.5, 8.0], z = [0.1, 0.4]
155683.6 Pa, 1227 K

Inlet
Gas: 0.035 kg/s, 300K (N₂)
234225.0 Pa

Coal: 0.3522 kg/s, 300K (Char, volatiles, Moisture, ash)
Gas: 0.18157 kg/s, 300K (N₂)

Char & ash: 3.746 kg/s, 1190K
Gas: 0.2935 kg/s, 1190K (CO, CO₂, CH₄, H₂, H₂O, N₂),
234225.0 Pa

Inlet
Gas: 0.035 kg/s, 300K (N₂)
234225.0 Pa, 482 K (N₂, O₂, H₂O), 0.342 kg/s
2. Project Update

T-5: Industrial Model Application and Analysis

(i) No radiation
(ii) Gray
(iii) Gray-wsgg
(iv) Nongray-wsgg

\(y = 6m, z = 0.25m, t = 20s \)

Significant difference \(\Delta T > 120K \) observed!
2. Project Update

T6: Development of High-End Research Models

Photon Monte-Carlo Method (PMC)

- PMC is essentially a Monte Carlo Integration of the RTE
- If it is coupled with a spectral database, this leads to a “model error free” solution of the RTE (numerical errors still present though)
- Work mostly done by MS student David Tobin (graduated in August)

Development approach

- Defined a basic interface to MFIX
- David coded the serial PMC method as a stand-alone Fortran program using data structures following “MFIX”
- After testing, the PMC solver was fully integrated into MFIX-RAD with the help of Dr. Kotteda
- Dr. Kotteda finished the parallel implementation of the PMC solver

Integrate RTE along a given path length (Beer’s Law)

\[I_\lambda(S) = I_\lambda(0)e^{-\int_0^S \alpha_\lambda s^* ds^*} \approx I_\lambda(0)e^{-\alpha_\lambda S} \]

Fraction of ray’s energy absorbed in the cell

\[F_{absorb} = 1 - e^{\alpha D_{cell}} \]
2. Project Update
T6: Development of High-End Research Models

Verification of stand-alone PMC solver by comparison with highly resolved DOM (32x16 rays)

- 3D Steady, single phase, **constant gray**
- Constant absorption coefficient = 0.1, no-scattering
- Varying wall emissivity
- Mesh: 17x17x34, tracked \(N = 10^9 \) rays

Wall heat flux along front wall (more sensitive than source term!)

\[
\nabla \cdot \vec{q}_{\text{rad}} \, dV = \int_{d\Omega} \vec{q}_{\text{rad}} \cdot \hat{n} \, dS
\]

Check conservation of energy with divergence theorem:

Average Relative Error of PMC Results: 0.00%
Average Relative Error of DOM Results: 4.94%

PMC inherently conserves energy!
2. Project Update
T6: Development of High-End Research Models

Verification of serial and parallel MFIX-RAD implementation

MFIX serial run-time ~4min

Initial result for parallel scaling are encouraging!

Scaling will improve greatly for non-gray applications
3. Preparing Project for Next Steps

Market Benefits/Assessment

• MFiX is widely used as CFD tool for modeling/optimization of reacting multiphase flow
• MFiX currently has only minimal radiative heat transfer modeling capability
• MFiX-RAD development adds
 • P1 + non-gray WSGG as the appropriate model for industrial applications (not available in either commercial (ANSYS-Fluent) or other open source (OpenFOAM) CFD codes
 • Model error free PMC solver to produce case specific benchmark data for RTE solver and Spectral Model accuracy assessment (not available in any other CFD codes)

Technology-to-Market Path

• MFiX-RAD Plug-In at current development state is available at GitLab => every MFiX user can download and use it their process modeling!
• We are seeking industry collaborators who want to use MFiX-RAD in their applications
• The MFiX-RAD Plug-In will be replaced by a full integration into the mainstream MFiX release towards the end of the project
4. Concluding Remarks

Remaining tasks

• Non-gray MFIX PMC solver
 ➢ Stand alone version for Statistical Narrow Band Model (Elsasser SNB) already implemented (see MS thesis of David Tobin)
 ➢ Line-by-line (LBL) Spectral Database (HiTran) for benchmarking (Task 6)
 ➢ Non-Gray WSGG PMC

• Task-7 “Comprehensive Validation and Benchmark”
 • Use non-Gray WSGG PMC to analyze model errors of P1 RTE solver (industrial model) for the large gasifier => P1 sufficiently accurate or not?
 • Comparison of PMC-LBL and PMC-ngWSGG results will reveal WSGG model errors
 • Such an analysis is only possible with PMC!

• Based on Task 7 make recommendations on next development steps
 ➢ Is P1-ngWSGG “sufficiently” accurate?
 ➢ If not, do we need a better RTE solver (i.e. P4, P6, or DOM)
 ➢ If not, do we need a better spectral model (k-distribution model?)