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1. Project Description and Objectives 

NETL’s MFiX —Multiphase Flow with Interphase eXchange

• Central to the laboratory’s multiphase flow reactor 
modeling efforts

• Provides support to achieve DOE’s goals
1. Cost of Energy and Carbon Dioxide (CO2) 

Capture from Advanced Power Systems
2. Power Plant Efficiency Improvements 

• Built with varying levels of fidelity/computational 
cost
▪ Lower fidelity models for large scale reactor 

design
▪ High fidelity models to support the 

development of lower fidelity models
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1. Project Description and Objectives 

• Fine grid with 1.3M cells
• Two solid phases (coal and recycled ash)
• Detailed gasification chemical kinetic (17 gas 

species, 4 solid species)

High-end validation study:

What was missing the in the model?

No real radiative heat transfer modeling 
available in MFiX!

Status of the beginning of the project

Driving Question/Motivation

Enhance MFiX capabilities by including 
models for radiative heat transfer 
following MFiX’s multi-fidelity approach

Results from : “Fluidized Beds – recent applications”, 
W. Rogers, 215 IWTU Fluidization Workshop 



1. Project Description and Objectives 

MFIX-RAD development plan 
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PMC +  Line-by-line model (full spectral resolution ~10 million 
lines) -> model error free

PMC +  Weighted Sum of Gray Gases (WSGG) model 

P1 +  WSGG model (gas & particles)

P1 +  Gray gas & particle model 
(neglect all spectral variations)

Industrial Model (main application)

“Basic Model”

Research Models (used for benchmarking)

P1 +  WSGG model & gray particles

P1 + gray constant (neglect all 
spectral and spatial variations)

Usable in MFIX-TFM and 
MFIX-DEM!



2. Project Update

Year 1 Year 2 Year 3 Year 4
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T-1: Project 
Management and 
Planning

T-2: Testing of the 
previously developed 
MFIX-RAD Radiation 
Model Plug-In

T-3: Implementing basic 
radiation model within 
MFIX-DEM

T-4: Implementation 
and Verification of 
Industrial Models

T-5: Industrial Model 
Application and Analysis

T-6: Development of 
High-End Research 
Models

T-7: Comprehensive 
Validation and 
Benchmark

We have received a 1 year, no cost extension

Near 
completion!

Done!



2. Project Update
Modeling approach

ε𝑔𝜌𝑔𝑐𝑝𝑔(
𝜕𝑇𝑔

𝜕𝑡
+ 𝑢𝑔 . ∆𝑇𝑔) = 𝛻𝑞𝑔 + σ𝑚=1

𝑀 𝐻𝑔𝑠𝑚 − ∆𝐻𝑟𝑔 + 𝐻𝑤𝑎𝑙𝑙 𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑔 − 𝛻. റ𝑞𝑟𝑔

Energy equations for MFiX-TFM

ε𝑠𝑚𝜌𝑠𝑚𝑐𝑝𝑠𝑚(
𝜕𝑇𝑠𝑚
𝜕𝑡

+ 𝑢𝑠𝑚 . ∆𝑇𝑠𝑚) = 𝛻𝑞𝑠𝑚 + σ𝑚=1
𝑀 𝐻𝑔𝑠𝑚 − ∆𝐻𝑟𝑠𝑚 − 𝛻. റ𝑞𝑟𝑠𝑚Solids

Gas

Single particle/parcel Energy equation for MFiX-DEM or MFIX-PIC

𝑚𝑖𝑐𝑝,𝑖
𝑑𝑇𝑖
𝑑𝑡

= ෍

𝑛=1

𝑁𝑖

𝑞𝑖,𝑗 + 𝑞𝑖,𝑓 + 𝑞𝑖,𝑟𝑎𝑑 + 𝑞𝑖,𝑤𝑎𝑙𝑙

Source/Sink Terms are obtained from the thermal radiation model! 



2. Project Update

𝑑𝐼𝜂

𝑑𝑠
= Ԧ𝑠 ⋅ 𝛻𝐼𝜂 = 𝑎𝜂𝐼𝑏𝜂

−𝑎𝜂𝐼𝜂

−𝜎𝑠𝜂𝐼𝜂 +
𝜎𝑠𝜂

4𝜋
න𝐼𝜂 Ԧ𝑠′ Φ𝜂( 𝑠, Ԧ𝑠

′)𝑑Ω

The RTE is an integro-differental equation for the 
spectral intensity 𝐼𝜂(𝑥, 𝑦, 𝑧, 𝜙, 𝜓, 𝜂)

(a function of 6 variables!)

Source term in the energy equation:

𝑆𝑟𝑎𝑑 = 𝛻 ⋅ Ԧ𝑞𝑟𝑎𝑑 = න

0

∞

𝑎𝜂 4𝜋𝐼𝑏𝜂 −න
4𝜋

𝐼𝜂𝑑Ω 𝑑𝜂

• 3 spatial dimensions Ԧ𝑟 𝑥, 𝑦, 𝑧 :CFD discretization
• 2 directional dimensions Ԧ𝑠 𝜙, 𝜓 : RTE solvers
• 1 spectral dimension 𝜂 : spectral models

Solution approach:
𝐺𝜂 spectral incident radiation

Modeling approach



2. Project Update

Gray P1 model assumptions
1) Gray participating medium (gas and solids) -> no dependence on wavenumber 𝜂

2) Use a “Fourier series” ansatz 𝐼 Ԧ𝑟, Ԧ𝑠 = σ𝑙=0
∞ σ−𝑙

𝑙 𝐼𝑙 Ԧ𝑟 ⋅ 𝑌𝑙 Ԧ𝑠

Spatially varying coefficients

Gas phase emission

3) Keeping only the first term 𝑙 = 0 leads to the P1 approximation

𝛻. Γ 𝛻𝐺 + 4 𝜋 𝑎𝑔
𝜎 𝑇4

𝜋
+ 𝐸𝑠 − 𝑎𝑔 + 𝑎𝑠 𝐺 = 0

4) Solve a “combined” (including all phases) P1 equation for G (Helmholtz type)

Solid phases emission

Gas phase absorption 

Solid phase absorption 

Γ =
1

3 𝑎𝑔 + 𝑎𝑠 + 𝜎𝑠 − 𝐶𝜎𝑠

Spherical harmonics

Modeling approach



2. Project Update

Distributing the source terms with P1

Continuous phase −𝜵. 𝒒𝒓𝒈 = 𝒂𝒈 𝑮 − 𝟒𝒂𝒈𝝈 𝑻𝒈
𝟒

Dispersed phase m (M total) −𝜵 ⋅ 𝒒𝒓𝒔,𝒎 = 𝒂𝒔,𝒎(𝑮 − 𝟒𝝈 𝑻𝒔,𝒎
𝟒 )

Spectral  models for 𝑎𝑔
• “gray constant” 𝑎𝑔 = 𝑐𝑜𝑛𝑠𝑡 (user input)

• “gray” => Planck mean absorption using 𝐶𝑂2 and 
𝐻2𝑂

• “gray and non-gray” WSGG based on 𝐶𝑂2 and 
𝐻2𝑂

Spectral models for 𝒂𝒔,𝒎
• “gray constant” based on constant emissivity and 

diameter of particles  
• “gray” based on Buckius-Hawang correlation 

(depends on refractive index, mean particle size, 
void fraction and temperature)

• “gray and non-gray” WSGG

Modeling approach

in TFM or parcels in DEM and PIC

𝛻. Γ 𝛻𝐺 + 4 𝜋 𝑎𝑔
𝜎 𝑇4

𝜋
+ 𝐸𝑠 − 𝑎𝑔 + 𝑎𝑠 𝐺 = 0



2. Project Update

Weighted Sum of Gray Gas (WSGG) model

Modeling approach

𝛻. Γ 𝛻𝐺 + 4 𝜋 𝑎𝑔
𝜎 𝑇4

𝜋
+ 𝐸𝑠 − 𝑎𝑔 + 𝑎𝑠 𝐺 = 0

• Derived by fitting model coefficients such that total 
emissivity in a 1-d slab of gas matches full spectral result

• Typically 4-5 gray gases are sufficient 

Gray WSGG model

The mean absorption coefficient is  𝑎𝑔 =
𝑙𝑛(1 − 𝜀)

𝐿

The total emissivity of a H2O/CO2 mixture is 𝜀 = ෍

𝑖=0

𝑁𝑔

𝑘𝑖(1 − 𝑒−𝑎𝑖 𝑃 𝑋𝐻2𝑂+𝑋𝐶𝑂2 𝐿)

Ng = number of gray gases 
L = path length 
ki = weighting factor 
bi,j = constants
ai = i-th gray gas absorption coefficient

Path length either defined as 𝐿 =
3.6𝑉

𝐴
(mean beam length) or as 𝐿 = 𝑉𝑐𝑒𝑙𝑙

1/3
(results are mesh dependent!)

Non-gray WSGG model 

Solve 𝑁𝑔 “gray-gas” equations i.e. for the ith gray gas  𝛻.
1

3𝑎𝑖
𝛻𝐺𝑖 + 4ai ki 𝜎 𝑇

4 − 𝑎𝑖𝐺𝑖 = 0

𝑘𝑖 = ෍

𝑗=0

𝑁𝑘

𝑏𝑖,𝑗𝑇
𝑗

The weighting factors are given by 
The source terms are then given by 

−𝛻. 𝑞𝑟𝑔 =෍

𝑖=0

𝑁𝑔

𝑎𝑖 𝐺𝑖 − 4𝑎𝑖𝑘𝑖𝜎 𝑇𝑔
4 L is not needed!!!



Start

Initialize computations

Decompose the domain

Compute various terms/fluxes in 
equations for the fluid phase

Apply BC and solve the system of 
equations for fluid variables 

Compute various terms/fluxes in 
equations for solid phases

Apply BC and solve the system of 
equations for solid phase variables 

Output

Finished 
time steps

Stop

Calculate 
Sr, the 

source/
sink term 

due to 
thermal 

radiation
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2. Project Update

NonGray-WSGG

Modeling overview



Temperature field

Porter, R., et al. "Evaluation of solution methods for radiative heat transfer in gaseous oxy-fuel combustion environments." 
Journal of Quantitative Spectroscopy and Radiative Transfer 111.14 (2010): 2084-2094.

• 3D Steady, single phase, gray
• Radiation model- P1,  WSGG – SMITH82
• L = 1.44 (3.6 V/A, based on domain)  optical 

thickness = 0.49  
• XH20 = 0.2;  XCO2= 0.1;  p = 1.0 atm
• Mesh: 17x17x34

2. Project Update
T4: Implementation and Verification of Industrial Models

Verification of gray-WSGG implementation by 
comparison with ANSYUS-FLUENT results 



2. Project Update
T4: Implementation and Verification of Industrial Models

Verification of non-gray WSGG implementation by comparison with results reported in Literature



Problems with the gray-WSGG

• Results strongly depend on the choice for L

• Results differ from non-gray result 

2. Project Update
T4: Implementation and Verification of Industrial Models

Gray and non-gray WSGG models implemented correctly, which one should we use as 
“Industrial Model”?

We prefer the non-gray version as our 
“Industrial Model” since it does not require 
arbitrary choice for L!

Further analysis of this choice will be 
provided in Task 7!



2. Project Update
T-5: Industrial Model Application and Analysis

13MW Power Systems Development Facility (PSDF) 
gasifier

Outlet
x= 0.5, y=[7.5,8.0], z= [0.1,0.4]
155683.6Pa, 1227 K 

Inlet
234225.0 Pa, 482 K (N2, O2, H2O), 0.342 kg/s

x=0,y=[0.32,0.36],z=[0,0.5]
Gas : 0.035 kg/s, 300K (N2)
234225.0 Pa  

x=0.5, y=[0.88,0.895],z=[0.1,0.4]
Coal: 0.3522 kg/s, 300K (Char, 
volatiles, Moisture, ash)
Gas : 0.18157 kg/s, 300K (N2)
234225.0 Pa  

x=0.5, y=[0.39,0.44],z=[0.1,0.4]
Char & ash : 3.746 kg/s, 1190K 
Gas : 0.2935 kg/s, 1190K
(CO, CO2, CH4, H2, H20, N2), 
234225.0 Pa  

• Mesh with 4M cells

• Chemistry based on 17 gas species, 4 solid 
species

Geometric simplification



2. Project Update
T-5: Industrial Model Application and Analysis

(i) No radiation

(iii) Gray-wsgg (iv) Nongray-wsgg

t= 20.0 t= 10.0 

(i)              (ii)           (iii)         (iv) (i)              (ii)           (iii)         (iv) 

(ii) Gray

Significant difference Δ𝑇 > 120𝐾
observed!

y = 6m, z = 0.25m, t = 20s



T6: Development of High-End Research Models
2. Project Update

Photon Monte-Carlo Method (PMC)

• PMC is essentially a Monte Carlo Integration of the RTE
• If it is coupled with a spectral database, this leads to a “model error 

free” solution of the RTE (numerical errors still present though)
• Work mostly done by MS student David Tobin (graduated in August)

Development approach
• Defined a basic interface to MFIX
• David coded the serial PMC method as a stand-

alone Fortran program using data structures 
following “MFIX”

• After testing, the PMC solver was fully integrated 
into MFIX-RAD with the help od Dr. Kotteda

• Dr. Kotteda finished the parallel implementation of 
the PMC solver 

𝐹𝑎𝑏𝑠𝑜𝑟𝑏 = 1 − 𝑒𝛼𝐷𝑐𝑒𝑙𝑙

𝐼𝜆 𝑆 = 𝐼𝜆 0 𝑒− 0׬
𝑠
𝛼𝜆𝑆

∗𝑑𝑆∗ ≈ 𝐼𝜆 0 𝑒−𝛼𝜆𝑆

Integrate RTE along a given path length 
(Beer’s Law)

Fraction of ray’s energy absorbed in the cell 



• 3D Steady, single phase, constant gray

• Constant absorption coefficient = 0.1, no-scattering

• Varying wall emissivity 

• Mesh: 17x17x34, tracked 𝑁 = 109 rays

2. Project Update
T6: Development of High-End Research Models

Verification of stand-alone PMC solver by comparison 
with highly resolved DOM (32x16 rays)

Wall heat flux along front wall (more sensitive 
than source term!)

න
Ω

𝛻 ⋅ Ԧ𝑞𝑟𝑎𝑑𝑑𝑉 = න
𝑑Ω

Ԧ𝑞𝑟𝑎𝑑 ⋅ ො𝑛 𝑑𝑆

Check conservation of energy 
with divergence theorem:

Average Relative Error of PMC Results: 0.00%
Average Relative Error of DOM Results: 4.94%

PMC inherently conserves energy! 



2. Project Update
T6: Development of High-End Research Models

Verification of serial and parallel MFIX-RAD 
implementation 

Initial result for parallel 
scaling are encouraging!

Scaling will improve greatly 
for non-gray applications

Serial & parallel results 
identical!MFIX serial run-time ~4min



3. Preparing Project for Next Steps

Market Benefits/Assessment

• MFiX is widely used as CFD tool for modeling/optimization of reacting multiphase flow

• MFiX currently has only minimal radiative heat transfer modeling capability

• MFIX-RAD development adds

• P1 + non-gray WSGG as the appropriate model for industrial applications (not available in 
either commercial (ANSYS-Fluent) or other open source (OpenFOAM) CFD codes

• Model error free PMC solver to produce case specific benchmark data for RTE solver and 
Spectral Model accuracy assessment (not available in any other CFD codes)

Technology-to-Market Path

• MFiX-RAD Plug-In at current development state is available at GitLab => every MFiX user can 
download and use it their process modeling!

• We are seeking industry collaborators who want to use MFiX-RAD in their applications

• The MFiX-RAD Plug-In will be replaced by a full integration into the mainstream MFIX release towards the 
end of the project



4. Concluding Remarks

• Non-gray MFIX PMC solver

➢Stand alone version for Statistical Narrow Band Model (Elsasser SNB) already implemented 
(see MS thesis of David Tobin)

➢ Line-by-line (LBL) Spectral Database (HiTran) for benchmarking (Task 6)

➢Non-Gray WSGG PMC

• Task-7 “Comprehensive Validation and Benchmark”

• Use non-Gray WSGG PMC to analyze model errors of P1 RTE solver (industrial model) for the 
large gasifier => P1 sufficiently accurate or not?

• Comparison of PMC-LBL and PMC-ngWSGG results will reveal WSGG model errors

• Such an analysis is only possible with PMC!

• Based on Task 7 make recommendations on next development steps

➢Is P1-ngWSGG “sufficiently” accurate?

➢If not, do we need a better RTE solver (i.e. P4, P6, or DOM)

➢If not, do we need a better spectral model (k-distribution model?)

Remaining tasks


