Implementing General Framework in MFiX for Radiative Heat Transfer in Gas–Solid Reacting Flows

DE-FE0030485

V M K Kotteda Postdoctoral Researcher University of Wyoming David Tobin Master Student University of Wyoming Michael Stoellinger Associate Professor of Mechanical Engineering University of Wyoming

2020 FE R&D PROJECT REVIEW MEETING, August 24, 2020

- 1. Project Description and Objectives
- 2. Project Update
- 3. Preparing Project for Next Steps
- 4. Concluding Remarks

1. Project Description and Objectives

UNIVERSIT of WYOMIN

NETL's MFiX — Multiphase Flow with Interphase eXchange

- Central to the laboratory's multiphase flow reactor modeling efforts
- Provides support to achieve DOE's goals
 - Cost of Energy and Carbon Dioxide (CO2) Capture from Advanced Power Systems
 - 2. Power Plant Efficiency Improvements
- Built with varying levels of fidelity/computational cost
 - Lower fidelity models for large scale reactor design
 - High fidelity models to support the development of lower fidelity models

Direct Numerical Simulation: Very fine scale, accurate simulations for verv limited size domain Discrete Element Method: Track individual particles DEM and resolve collisions WFX Hybrid Hybrid: Continuum and discrete solids coexist Two-Fluid Model: Gas and solids form an TEM TEM interpenetrating continuum Particle-in-Cell : Track parcels of **MFX** PIC particles and approximate collisions Reduced Order Models: Simplifie models with limited application Model uncertainty

1. Project Description and Objectives Status of the beginning of the project

High-end validation study:

- Fine grid with 1.3M cells
- Two solid phases (coal and recycled ash)
- Detailed gasification chemical kinetic (17 gas species, 4 solid species)

What was missing the in the model?

No real radiative heat transfer modeling available in MFiX!

Driving Question/Motivation

Enhance MFiX capabilities by including models for radiative heat transfer following MFiX's multi-fidelity approach

Results from : "Fluidized Beds – recent applications", W. Rogers, 215 IWTU Fluidization Workshop

1. Project Description and Objectives

We have received a 1 year, no cost extension

	Year 1				Year 2				Year 3				Year 4			
Tasks	10/ 17	01/ 18	04/ 18	07/ 18	10/ 18	01/ 19	04/ 19	07/ 19	10/ 19	01/ 20	04/ 20	07/ 20	10/ 20	01/ 21	04/ 21	07/ 21
T-1: Project Management and Planning			D	one	e!											
T-2: Testing of the previously developed MFIX-RAD Radiation Model Plug-In				1												
T-3: Implementing basic radiation model within MFIX-DEM							2									
T-4: Implementation and Verification of Industrial Models								3								
T-5: Industrial Model Application and Analysis										4		N C	ear omp	oleti	on!	
T-6: Development of High-End Research Models													5			
T-7: Comprehensive Validation and Benchmark																6

Energy equations for MFiX-TFM

$$Gas \qquad \varepsilon_{g}\rho_{g}c_{pg}(\frac{\partial T_{g}}{\partial t} + u_{g} \cdot \Delta T_{g}) = \nabla q_{g} + \sum_{m=1}^{M} H_{gsm} - \Delta H_{rg} + H_{wall}(T_{wall} - T_{g}) - \nabla \cdot \vec{q}_{rg}$$

Solids
$$\varepsilon_{s_{m}}\rho_{s_{m}}c_{ps_{m}}(\frac{\partial T_{s_{m}}}{\partial t} + u_{s_{m}} \cdot \Delta T_{s_{m}}) = \nabla q_{s_{m}} + \sum_{m=1}^{M} H_{gsm} - \Delta H_{rs_{m}} - \nabla \cdot \vec{q}_{rs_{m}}$$

Single particle/parcel Energy equation for MFiX-DEM or MFIX-PIC

$$m_{i}c_{p,i}\frac{dT_{i}}{dt} = \sum_{n=1}^{N_{i}} q_{i,j} + q_{i,f} + q_{i,rad} + q_{i,wall}$$

Source/Sink Terms are obtained from the thermal radiation model!

UNIVERSITY of Wyoming

2. Project Update Modeling approach

$$\frac{dI_{\eta}}{ds} = \vec{s} \cdot \nabla I_{\eta} = a_{\eta} I_{b\eta}$$
$$-a_{\eta} I_{\eta}$$

 $-\sigma_{s\eta}I_{\eta} + \frac{\sigma_{s\eta}}{4\pi} \int I_{\eta}(\vec{s}')\Phi_{\eta}(\vec{s},\vec{s}')d\Omega$

Source term in the energy equation:

$$S_{rad} = \nabla \cdot \vec{q}_{rad} = \int_{0}^{\infty} a_{\eta} \left(4\pi I_{b\eta} - \int_{4\pi} I_{\eta} d\Omega \right) d\eta$$

The RTE is an integro-differental equation for the spectral intensity $I_{\eta}(x, y, z, \phi, \psi, \eta)$ (a function of 6 variables!)

Solution approach:

•

3 spatial dimensions $\vec{r}(x, y, z)$:CFD discretization

 G_n spectral incident radiation

- 2 directional dimensions $\vec{s}(\phi, \psi)$: RTE solvers
- 1 spectral dimension (η) : spectral models

Gray P1 model assumptions

1) Gray participating medium (gas and solids) -> no dependence on wavenumber η

3) Keeping only the first term l = 0 leads to the P1 approximation

4) Solve a "combined" (including all phases) P1 equation for G (Helmholtz type)

$$\nabla \cdot (\Gamma \nabla G) + 4 \pi \left(a_g \frac{\sigma T^4}{\pi} + E_s \right) - \left(a_g + a_s \right) G = 0$$

Gas phase emission
Gas phase emission
Solid phases emission
$$\Gamma = \frac{1}{3(a_g + a_s + \sigma_s) - C\sigma_s}$$

Distributing the source terms with P1

$$\nabla \cdot (\Gamma \nabla G) + 4 \pi \left(a_g \frac{\sigma T^4}{\pi} + E_s \right) - \left(a_g + a_s \right) G = 0$$

Continuous phase

$$-\nabla \cdot q_{rg} = a_g G - 4a_g \sigma T_g^4$$

Spectral models for a_q

- "gray constant" $a_g = const$ (user input)
- "gray" => Planck mean absorption using CO₂ and H₂O
- "gray and non-gray" WSGG based on CO_2 and H_2O

Dispersed phase m (M total)

$$\nabla \cdot q_{rs,m} = a_{s,m}(G - 4\sigma T_{s,m}^4)$$

in TFM or parcels in DEM and PIC

Spectral models for $a_{s,m}$

- "gray constant" based on constant emissivity and diameter of particles
- "gray" based on Buckius-Hawang correlation (depends on refractive index, mean particle size, void fraction and temperature)
- "gray and non-gray" WSGG

Weighted Sum of Gray Gas (WSGG) model

- Derived by fitting model coefficients such that total emissivity in a 1-d slab of gas matches full spectral result
- Typically 4-5 gray gases are sufficient

Gray WSGG model

$$\nabla \cdot (\Gamma \nabla G) + 4 \pi \left(a_g \frac{\sigma T^4}{\pi} + E_s \right) - \left(a_g + a_s \right) G = 0$$

 N_g = number of gray gases The mean absorption coefficient is $a_g = \frac{ln(1-\varepsilon)}{L}$ L = path length $k_i = \text{weighting factor}$ $k_i = \text{constants}$ $k_i = i-\text{th gray gas absorption coefficient}$ $\varepsilon = \sum_{i=0}^{N_g} k_i (1 - e^{-a_i P (X_{H20} + X_{C02})L})$ $a_i = i-\text{th gray gas absorption coefficient}$ Path length either defined as $L = \frac{3.6V}{A}$ (mean beam length) or as $L = V_{cell}^{1/3}$ (results are mesh dependent!) Non-gray WSGG model

Solve
$$N_g$$
 "gray-gas" equations i.e. for the ith gray gas $\nabla \cdot \left(\frac{1}{3a_i}\nabla G_i\right) + 4a_i k_i \sigma T^4 - a_i G_i = 0$

The weighting factors are given by

The source terms are then given by

$$k_i = \sum_{j=0}^{N_k} b_{i,j} T^j$$

 $-\nabla \cdot q_{rg} = \sum_{i=0}^{N_g} a_i G_i - 4a_i k_i \sigma T_g^4$

L is not needed!!!

UNIVERSITY of WYOMING

Modeling overview

T4: Implementation and Verification of Industrial Models

- 3D Steady, single phase, gray
- Radiation model- P1, WSGG SMITH82
- L = 1.44 (3.6 V/A, based on domain) optical thickness = 0.49
- X_{H20} = 0.2; X_{CO2} = 0.1; p = 1.0 atm
- Mesh: 17x17x34

Verification of gray-WSGG implementation by comparison with ANSYUS-FLUENT results

Porter, R., et al. "Evaluation of solution methods for radiative heat transfer in gaseous oxy-fuel combustion environments." Journal of Quantitative Spectroscopy and Radiative Transfer 111.14 (2010): 2084-2094.

2. Project Update T4: Implementation and Verification of Industrial Models

UNIVERSITY OF WYOMING

Verification of non-gray WSGG implementation by comparison with results reported in Literature

UNIVERSITY of Wyoming

2. Project Update

T4: Implementation and Verification of Industrial Models

Gray and non-gray WSGG models implemented correctly, which one should we use as "Industrial Model"?

Problems with the gray-WSGG

- Results strongly depend on the choice for L
- Results differ from non-gray result

We prefer the non-gray version as our "Industrial Model" since it does not require arbitrary choice for L!

Further analysis of this choice will be provided in Task 7!

T-5: Industrial Model Application and Analysis

13MW Power Systems Development Facility (PSDF) gasifier

- Mesh with 4M cells
- Chemistry based on 17 gas species, 4 solid ٠ species

Inlet

234225.0 Pa, 482 K (N₂, O₂, H₂O), 0.342 kg/s

234225.0 Pa

T-5: Industrial Model Application and Analysis

(i) No radiation (ii) Gray
(iii) Gray-wsgg (iv) Nongray-wsgg y = 6m, z = 0.25m, t = 20s

Significant difference $\Delta T > 120K$ observed!

T6: Development of High-End Research Models

Photon Monte-Carlo Method (PMC)

- PMC is essentially a Monte Carlo Integration of the RTE
- If it is coupled with a spectral database, this leads to a "model error free" solution of the RTE (numerical errors still present though)
- Work mostly done by MS student David Tobin (graduated in August)

Development approach

- Defined a basic interface to MFIX
- David coded the serial PMC method as a standalone Fortran program using data structures following "MFIX"
- After testing, the PMC solver was fully integrated into MFIX-RAD with the help od Dr. Kotteda
- Dr. Kotteda finished the parallel implementation of the PMC solver

Fraction of ray's energy absorbed in the cell $F_{absorb} = 1 - e^{\alpha D_{cell}}$

UNIVERSITY of WYOMINC

2. Project Update

T6: Development of High-End Research Models

Verification of stand-alone PMC solver by comparison with highly resolved DOM (32x16 rays)

- 3D Steady, single phase, constant gray
- Constant absorption coefficient = 0.1, no-scattering
- Varying wall emissivity
- Mesh: 17x17x34, tracked $N = 10^9$ rays

Check conservation of energy with divergence theorem:

$$\int_{\Omega} \nabla \cdot \vec{q}_{rad} dV = \int_{d\Omega} \vec{q}_{rad} \cdot \hat{n} \, dS$$

Wall heat flux along front wall (more sensitive than source term!)

Average Relative Error of PMC Results: 0.00% Average Relative Error of DOM Results: 4.94%

PMC inherently conserves energy!

T6: Development of High-End Research Models

Processors

3. Preparing Project for Next Steps

UNIVERSITY of WYOMING

Market Benefits/Assessment

- MFiX is widely used as CFD tool for modeling/optimization of reacting multiphase flow
- MFiX currently has only minimal radiative heat transfer modeling capability
- MFIX-RAD development adds
 - P1 + non-gray WSGG as the appropriate model for industrial applications (not available in either commercial (ANSYS-Fluent) or other open source (OpenFOAM) CFD codes
 - Model error free PMC solver to produce case specific benchmark data for RTE solver and Spectral Model accuracy assessment (not available in any other CFD codes)

Technology-to-Market Path

- MFiX-RAD Plug-In at current development state is available at GitLab => every MFiX user can download and use it their process modeling!
- We are seeking industry collaborators who want to use MFiX-RAD in their applications
- The MFiX-RAD Plug-In will be replaced by a full integration into the mainstream MFIX release towards the end of the project

4. Concluding Remarks

Remaining tasks

- Non-gray MFIX PMC solver
 - Stand alone version for Statistical Narrow Band Model (Elsasser SNB) already implemented (see MS thesis of David Tobin)
 - Line-by-line (LBL) Spectral Database (HiTran) for benchmarking (Task 6)
 Non-Gray WSGG PMC
- Task-7 "Comprehensive Validation and Benchmark"
 - Use non-Gray WSGG PMC to analyze model errors of P1 RTE solver (industrial model) for the large gasifier => P1 sufficiently accurate or not?
 - Comparison of PMC-LBL and PMC-ngWSGG results will reveal WSGG model errors
 - Such an analysis is only possible with PMC!
- Based on Task 7 make recommendations on next development steps
 ➢ Is P1-ngWSGG "sufficiently" accurate?
 - ≻If not, do we need a better RTE solver (i.e. P4, P6, or DOM)
 - ➢ If not, do we need a better spectral model (k-distribution model?)