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Background and motivation

Tenneti &
Subramaniam (2016) Two-Fluid Model
T (TFM)

CFD-DEM

Fullmer and Hrenya
(Ann. Rev. Fluid Mech., 2017)

More detail, fewer closures

<
Less CPU time

Expected value added through DEM

In the next ten
years

1% N

PSRI Industrial Survey
(Cocco et al., Chem. Eng. Prog.,2017)

DEM:

a balance between computational
overhead and sources of uncertainty
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Background and motivation

CFD-DEM Laboratory Industry
N, ~ 10° - 107 N, ~ 10°-10% N, ~ 1014

Goal: DEM application toward industrially relevant flows

Challenges
e Speed = Optimization & Algorithms (this talk)
* Results reliability = Validation & Uncertainty Quantification
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Recent accomplishments
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Hopper discharge simulation with 1 billion particles
* 889 nodes (32000 MPI ranks) on Eagle, NREL
 17.5 hours

* 30 cm tall, 6 cm diameter, 100 um size particles

e ~5X speed-up achieved with two important algorithmic changes
e Adaptive time integration
e Spatial reordering of particles

speed (M/s)
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Adaptive time integration for particles




Adaptive time integration for particles

* Time step controlled by collisional time scale
* Depends on spring and damping constants
* CFLissetat 0.02 in MFiX

—1/2

B ( kn, 77?,, > /
Tp =T - 2
Met  4Mig

At, =CFL T,

* Challenge with constant particle time-step
* Fluid residence time scales with system dimensions
* Particle time scale is intrinsic to phase properties

e For large-scale systems computational cost increases
 More number of particles
* More number of time steps

* Can we adapt particle time-steps over the course of simulations?
* Dilute systems may be able to advance with bigger steps
* Reduction in collisions as particles slow down
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Adaptive time integration for particles

Default MFIX scheme (locally 2" order)
mn mn mn mn
fi" =fi(vi", xi", ")

n—+1 * n n
Vi T = Vi = Vj —|—fi Atp Velocity update

Interaction forces

Xin+1 = x;" + Vi*Atp position update

Higher-order embedded scheme (locally 3™ order)

Vi* = Vin + finAtp
Same as default scheme

X" =x;" + Vi*Atp

fi" = fi(Xi*a Vi, t+ Atp) A predicted force!

n+1

1
'vi  =wvi"+ §(fin +£i7)At,

S . 2nd order RK/trapezoidal
=Xj + §(Vi +vi")At, scheme

n—+1
s
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Adaptive time integration for particles

Higher-order embedded scheme (locally 37 order)

Vi>|< — Vin -+ finAtp
Original 2" order scheme

n+1 1
TVi = v;"' + i(fin + fi*)Atp
o 1 3rd order update
mn
Tx;  =x"+ §(V1” + vi")At,
Gn—H — max(|TV?+1 — V;k |2) Error between solutions
)
. € max min . .
Atg“ — max (mm (?OAtZ, At ) , At ) Time-step adaption

* Double force calculation can be avoided by reusing from previous time-step
* Facility to redo a timestep if the error jumps are high
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Binary collision with default scheme
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e Slight perturbation in CFL results in large deviations
* Euler-explicit, Adams-Bashforth, 3 order RK give 15t order convergence
* Lower time-step does not guarantee lower error
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Particle velocity (m/s)
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Binary collision with adaptive time-stepping
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* Adaptive time-stepping match reference solution well

e Deviations only at high error tolerances

* Time step size is adapted only during collision events

* Adaptive time-stepping was about 6X faster than default scheme
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Average particle speed (m/s)

Homogenous cooling system (HCS)
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e Adaptive time-stepping gave an improvement of ~ 3X while
reproducing the reference solution
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Fluidized bed
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* Fluidized bed validation case with

I
1r ig N experiments by Muller et al.*
c RK —©—
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8 Experimental data ~— = e Adaptive time-stepping gave an
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R " validated with experiments
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*C. R. Muller, S. A. Scott, D. J. Holland, B. C. Clarke, A. J. Sederman, J. S. Dennis, L. F. Gladden, Validation of a discrete
element model using magnetic resonance measurements, Particuology 7 (4) (2009) 297-306. NREL | 13



Wall-clock time (s)

Hopper discharge
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e Pure DEM case with 1 mill. particles

e Adaptive time-stepping gave an
e improvement of ~ 3X while
reproducing identical solutions
* Lower tolerance values did not
give improvements
e Exhibits good parallel scaling
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Spatial reordering of particles




Spatial reordering - main idea
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e Particles are stored in memory agnostic to their location in space

* Spatial reordering will increase spatial data locality in memory while
» Building neighbor lists

* Two strategies — Morton ordering of uniform/kD-tree partitions

» Calculating inter particle forces — collisions
» Creating send/receive buffers
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Morton ordering of uniform partitions

Split the box into sub grids based

cartesian coordinates

on average particle diameter and assign

Interleave coordinates’ bit and

assign Z-numbers to particles

Reorder particle IDs based on Z-numbers
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Default particle data structure

Spatially reordered particle data structure

Each box of co-located particles is divided into uniform partitions

Particles in each partition assigned a Z-number
* For example, coordinate of (3,4) in an 8 x 8 grid is 011010 = 26

Particles are sorted and reordered based on their Z number
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Spatial reordering of particles

recursively split the box based
on particle distribution and assign bits

based on partition

Z-order each sub grid by
concatenating the assigned bits

~

Reorder particle IDs
based on Z-numbers

<< split 1 ® ® e e
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Default particle data structure

Spatially reordered particle data structure

Each box of co-located particles is divided into kD-tree based partitions

Concatenated binary coordinates gives the Z number

Particles are sorted and reordered based on their Z number

Useful when there is non-uniform distribution of particles in space
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Homogenous cooling system case
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kD-tree partitions

Single core perfromance of spatial reordering techniques

applied to the Homogeneous Cooling System benchmark [ ] Ove ra I I i m p rove m e nt Of ~

with 100,000 particles.

20% with reordering

.000 ‘%
7000.000 ‘ﬁ . .
% * Reordering routines take
% less than 2% of total run
5 3000.000 :ﬁ g: ti m e
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simulation particle particlecollision update particle spatail

Uniform partitions runtime ne‘f‘;bt:)orrl:st update neighbors reordering time is reduced by 50%

« Default 11 Morton order - uniform grids Morton order - kD-tree grids
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Fluidized bed case
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Muller Fluidized Bed with 9240 particles simulated using a
single core- Performance of operations involving particle
neighbors
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Non-uniform distribution of
particles during bubbling

kD-tree based partitioning gives
better performance

20% improvement in building
neighbor lists

Improvements are greater with
larger number of particles.
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GPU performance improvements
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Next milestone - Riser simulations with 1 billion particles

Testing Riser simulations with 2 million particles on Frontera (TACC)
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Use of 4 GPUs on a single node gives about 3X performance
improvement over 40 CPUs

Use of our optimizations gives 4X improvement

The use of 1 GPU is equivalent to CPU run with 40 MPI ranks
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* Two important algorithmic changes

* Adaptive time integration of particles

* Use of an embedded higher/lower order scheme
* Time step is adapted based on error

* Increased performance, detect/correct failures

e Sitaraman et al.,” An error-controlled adaptive time-stepping

method for particle advancement in coupled CFD-DEM simulation”,
Powder Tech., (in review)

* Future work: explore space of tolerance and accuracy

* Spatial reordering of particles
* Reordering particles to achieve better memory performance
 Two approaches using Morton ordering
* Uniform and kD tree partitions
10-20% speed-up for cases with ~ 100k particles

Vaidhynathan et al.,” Memory optimization for particle access in
CFD-DEM Simulations”, (under internal review)

Future work: dynamic selection of method at run-time
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Questions/Comments?
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