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A New Platform for Process Design & Optimization



Advances in discrete optimization
(algorithms and formulation)

Advances in continuous nonlinear 
optimization (dynamics, uncertainty)

Support for innovative concepts,
systems, and technologies: 
Process Intensification; Hybrid Systems

Greater linkages among scales

Increasingly dynamic operations 30+ years of progress in algorithms, 
hardware, modeling approaches

DOE Office of Fossil Energy Simulation-Based Engineering/Crosscutting R&D Program



Simulator

Process Optimization: Transition to EO (algebraic) models
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Optimization with
embedded algebraic model 

as constraints

Optimization over
degrees of freedom only

Glass-box optimization
~ 1-5 STE

Black-box optimization (DFO)
~ 100-1000 simulations

[Adapted from Biegler, 2017]



Equation-Oriented (algebraic) models: Benefits
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• Explicit equations exposed to general numerical solvers 
and analysis tools

• Significantly faster computational performance: automatic 
differentiation, exposed structure
– Fully integrated complex facilities (enterprise-wide)
– DAE and uncertainty can be addressed in this form

• Separation of model from solver
– Supports a wide range of Newton-based solvers
– Same model used for different analyses

(simulation, optimization, sensitivity, UQ)
• Automatic model transformation and reformulation

(e.g., MPEC, GDP, DAE, Stochastic Programming)
• MINLP / global optimization with explicit expressions



Equation-Oriented (algebraic) models: Challenges
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• Effective initialization critical for reliable convergence

• Not everything can (easily) be made equation-oriented
– Need a strategy for black-box sub-components

• Nonlinear simulation and optimization formulations are 
much larger than black-box counterparts



Process Optimization Environments and NLP Solvers
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Black-box
Simulation > 100 Simulation Time EquivalentDFO

rSQP

SQP

NLP Barrier

Finite Difference
Derivatives

Exact First
Derivatives

Exact First & Second
Derivatives, Sparse structure

~ 10 STE

~ 5 STE

~ 3 STE
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# of Variables / Constraints

Glass-box

10                        102 104 106

Can now treat millions of variables … on your desktop ... in minutes

[Adapted from Biegler, 2017]



Capabilities Needed for Design of Novel Energy Systems

7

Existing process unit model library for rapid 
assembly and modeling of flowsheets 

Construction of optimization-ready 
surrogates and physical property relations

Flexible capabilities to model novel 
technologies and optimize new materials

Efficient optimization tools to explore large 
space of potential process flowsheets

Scalable identification and handling of 
uncertainty inherent in novel design

IDAES PyoSyn framework for superstructure 
optimization with Pyomo.GDP and GDPOpt

Stochastic prog. and adaptive robust optimization for 
scalable, rigorous treatment of uncertainty

IDAES Steady-state and dynamic 
equation-oriented modeling framework

IDAES Steady-state and dynamic 
equation-oriented modeling framework

ALAMO, HELMET, RIPE: Surrogate modeling and 
estimation of kinetics and thermo-physical properties



Capabilities Needed for Design of Novel Energy Systems

ALAMO: Machine Learning approaches for 
optimization-ready surrogate modeling

Advanced, flexible modeling capabilities 
to understand impact of novel

IDAES Steady-state and dynamic 
equation-oriented modeling framework

IDAES PyoSyn framework for superstructure 
optimization with Pyomo.GDP and GDPOpt

Stochastic prog. and adaptive robust optimization for 
scalable, rigorous treatment of uncertainty
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• Very capable for steady-state modeling of existing
processes and techno-economic analysis

• Simulation-based, black-box analysis does not 
support “glass-box” optimization-based approaches

• Insufficient flexibility for easy creation of tailored 
models from existing sub-components

• Difficult to explore large space of potential flowsheets, 
typically focus on a few (design rules and experience)

Sequential Modular Flowsheeting Tools

Strong process modeling libraries – missing full “glass-box” for advanced optimization

Existing process unit model library for rapid 
assembly and modeling of flowsheets 

Flexible capabilities to model novel 
technologies and optimize new materials

Efficient optimization tools to explore large 
space of potential process flowsheets

Construction of optimization-ready 
surrogates and physical property relations

Scalable identification and handling of 
uncertainty inherent in novel design

Image from: Kundu, Prodip & Chakma, Amit & Feng, Xianshe. (2014). Effectiveness of membranes and hybrid membrane processes in comparison with absorption using amines for post-combustion CO2 capture. International Journal of Greenhouse Gas Control. 28. 248–256.



Capabilities Needed for Design of Novel Energy Systems

ALAMO: Machine Learning approaches for 
optimization-ready surrogate modeling
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Existing process unit model library for rapid 
assembly and modeling of flowsheets 

Flexible capabilities to model novel 
technologies and optimize new materials

Efficient optimization tools to explore large 
space of potential process flowsheets

Construction of optimization-ready 
surrogates and physical property relations

Scalable identification and handling of 
uncertainty inherent in novel design

Advanced, flexible modeling capabilities 
to understand impact of novel

IDAES Steady-state and dynamic 
equation-oriented modeling framework

Stochastic prog. and adaptive robust optimization for 
scalable, rigorous treatment of uncertainty

General Algebraic Modeling Tools (e.g., GAMS, AMPL)

• Superstructure optimization (reformulated as MINLP) 
well-supported by algebraic modeling tools (e.g., 
AMPL, GAMS)

• Algebraic modeling tools lack component-based, 
process engineering model libraries

• Significant expertise required to formulate the 
(manual) transformation to MINLP

• No capabilities for developing advanced algorithms

I

II

I

II

III

IV

I

II

III

Strong “glass-box” capabilities – missing model libraries and extensibility for advanced algorithms



Capabilities Needed for Design of Novel Energy Systems
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Existing process unit model library for rapid 
assembly and modeling of flowsheets 

Next Generation 
Integrated 

Platform for 
Modeling and 
Optimization

Construction of optimization-ready 
surrogates and physical property relations

Flexible capabilities to model novel 
technologies and optimize new materials

Efficient optimization tools to explore large 
space of potential process flowsheets

Scalable identification and handling of 
uncertainty inherent in novel design

IDAES PyoSyn framework for superstructure 
optimization with Pyomo.GDP and GDPOpt

Stochastic prog. & adaptive robust optimization for 
scalable, rigorous treatment of uncertainty

IDAES Steady-state and dynamic 
equation-oriented modeling framework

IDAES Steady-state and dynamic equation-
oriented model library and modular structure

ALAMO, HELMET, RIPE, PySMO: Optimization-
based AI/ML approaches for kinetics, surrogate 

models, and thermo-physical properties



Integrated Platform
IDAES-Core

IDAES-UQ

IDAES-AI

IDAES-Materials

IDAES-Enterprise

IDAES-Design

IDAES-Operations

Hierarchical - Steady-State & Dynamic - Model Libraries

Advanced Equation 

Oriented Solvers

Flexible Programming 

Foundation

Data Management 

Framework

User Interface & 

Visualization

Data Reconciliation

Parameter Estimation
Optimization & Uncertainty 

Quantification

PyROS
K-Aug & sIPOPT

Rigorous Model Sensitivity

Multi-Scale Modeling 

and Optimization

Conceptual Design via

Superstructure Optimization

Process Design, Optimization 

& Integration

Pyosyn

!
"
# Trajectory optimization, optimal 

control, state/parameter estimation

Process Dynamics Process Control

Expansion Planning

Electricity Grid Modeling

Modeling Framework
Steady 
State

Dynamic 
Model

Control Volume

Material Balances
Energy Balances

Momentum Balances

Inlet
State

Outlet
State



Pyomo: Python Optimization Modeling Objects
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Solver Interfaces

GLPK

BARON

CBC

CPLEX

Gurobi

NEOS

Ipopt

KNITRO

Bonmin

Core Modeling 
Objects

Couenne

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Core Optimization 
Objects

Model 
Transformations

DAKOTA

DICOPT

ANTIGONE

⋅⋅⋅

⋅⋅⋅

AMPL Solver Library

GAMS Solver Library

Pre-compiled in IDAES release 
with HSL COIN + MA48 libraries



Dynamics & 
Control

Conceptual 
Design

Parameter 
Estimation

Data 
Reconciliation

Optimization

Flexibility and power of an equation-oriented modeling package
Supports the block structure of a process simulator

IDAES Model Structure
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Property 
Packages

Unit Models

Reaction 
Packages

Balance Equations

Performance Equations

Equilibrium Equations

Mixing Rules

Ideal Property Models

Unit 
Operations

Process 
Flowsheet



• Existing Plant Process Improvements & Optimization
• Design & Optimization of Complex, Interacting Systems

– Design space exploration
– Optimization of carbon capture systems
– Robust design to reduce technical risk

• Bridging timescales between power plant and grid
– Energy storage to reduce cycling / wear
– Insights on optimal bid strategies to increase revenue

Recent Applications and Impact
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• Existing Plant Process Improvements & Optimization
• Design & Optimization of Complex, Interacting Systems

– Design space exploration
– Optimization of carbon capture systems
– Robust design to reduce technical risk

• Bridging timescales between power plant and grid
– Energy storage to reduce cycling / wear
– Insights on optimal bid strategies to increase revenue

Recent Applications and Impact
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Escalante Generating 
Station, Prewitt, NM

245 MW Subcritical Plant

Frequent Cycling

Support for the Existing Coal-Generation Fleet
Partnership with Tri-State Generation and Transmission Association

• Major focus areas
- Reducing minimum load

Demonstrated 44% improvement upon 
correcting deaerator water hammer issue

- Improving heat rate
Up to 2% improvement with a steeper sliding 
pressure approach to load following

- Fault detection and diagnosis
Alarm settings can identify reheater plugging 
4-5 days in advance (previously 1-2 days)

- Extending equipment life

• Public releases
- Jan 20: Steady-state power plant model library

- July 20: Code for data reconciliation, 

parameter estimation, and optimization

- Dec 20: Dynamic power plant model library



IDAES Enables Complete Workflow from Analysis to Optimization
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𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨
• Flowsheet connectivity
• Mass and energy balances
• Physical property calculations
• Performance equations for unit models
• Load = Target Load
• Operational Constraints (e.g., T<Tmax)
• Emissions < Emission Limits

System-wide Optimization
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𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨
• Flowsheet connectivity
• Mass and energy balances
• Physical property calculations
• Performance equations for unit models

Parameter EstimationData Reconciliation
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𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨
• Flowsheet connectivity
• Mass and energy balances
• Physical property calculations

errormeas = measurement – model prediction
measurement uncertainty

“Ensure data is reliable” “Make models predictive” “Identify optimal operation”
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System-wide Optimization Revealed Heat Rate Improvements 
Achievable through Steeper Sliding Pressure Operation
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• Flowsheet connectivity
• Mass and energy balances
• Physical property calculations
• Performance equations for unit models
• Load = Target Load
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Less throttling with 
steeper sliding 
pressure

0.6 %-point (2% overall) 
improvement achievable with 

steeper sliding pressure



• Existing Plant Process Improvements & Optimization
• Design & Optimization of Complex, Interacting Systems

– Design space exploration
– Optimization of carbon capture systems
– Robust design to reduce technical risk

• Bridging timescales between power plant and grid
– Insights on optimal bid strategies to increase revenue
– Energy storage

Recent Applications and Impact
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Design & Optimization of Complex, Interacting Systems
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Technology 
Selection

Optimal    
Design

Transient 
Operability

Grid 
Interactions

Conceptual Design
Physics based models
Reduced Order Models

NPV maximization

Use rigorous models
Validate performance

Optimize design variables

Dynamic models
Control Design

Optimal plant dispatch
Identify operating constraints

Infrastructure Planning
Production Cost Model



Design Space Exploration of Options and Configurations
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Option I

Option II

Option I

Option II

Option III

Option IV

Option I

Option II

Option III

9 disjunctions, 18 binary variables à 315 flowsheets to evaluate 

Upstream Power
Generation

Storage Technology

Carbon Capture System

• Implement superstructure in IDAES
• Down select technologies faster
• Eliminate exhaustive TEA analysis for 

all possible configurations



PyoSyn: Kaibel Column Conceptual Design Example
§ Components: Methanol, ethanol, n-propanol, n-butanol

– 99% purity for each component
§ 42 million combinations 
§ GDP model written using Pyomo.GDP

– 5715 constraints
• 2124 nonlinear

– 100 disjunctions
• 3599 variables

– 178 binary
– 3421 continuous

§ Solved in 639 sec using GDPopt-LOA solver
– Logic-based outer approximation algorithm
– 4 iterations

§ Resulting design:
– 46 trays (21% reduction vs. base case)
– Dividing wall between 12th and 26th tray
– Feed at 18th tray
– Side outlets at 13th and 22nd trays

ABCD

A

B
C

D

Optimal Design Kaibel Column reduces energy consumption by more than 40% compared to 2 columns

Condenser Tray
(permanent)

Rectification Trays
(conditional)

Feed Tray
(permanent)

Stripping Trays
(conditional)

Reboiler Tray
(permanent)Heavy Product

Feed

Light
Product

}
-OR-

-OR-

-OR-

-OR-

}
Rawlings, Chen, Grossmann, Caballero, Computers & Chemical Engineering, 125, 2019, 31-39. 22



Amine-Based Post-Combustion CO2 Capture Process
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Process Optimization

Model Validation Using TCM and NCCC Data
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• Design Variables (First-Stage)
– Columns dimensions (D,A), heat exchanger areas (Axhx)
– hold-up tank volumes (V), pump power (P)

• Control Variables (Second-Stage)
– Duties (Qreb , Qcon)

• Uncertain Parameters
– Equilibrium constant parameters (b1, b2)

PyROS: Robust Design CO2 Capture System

Deterministic Solution Robust Solution
Cost: $7.37 MM/yr

Second-stage Cost: $5.17 MM/yr
Cost: $10.82 MM/yr

Expected Second-stage Cost: $6.30 MM/yr

Labs = 22.36 m
Dabs = 2.84 m  

Lreg = 12.29 m
Dreg = 1.79 m  

Axhx = 6,688 m2

Qreb = 18 MW
Qcon = -5.6 MW

Labs = 17.04 m
Dabs = 2.63 m  

Lreg = 5.00 m
Dreg = 2.47 m  

Axhx = 3,878 m2

Qreb = 23.5 ± 7.1 MW
Qcon = -4.6 ± 7.7 MW

Isenberg, N.. I., Akula, P., Eslik, J., Bhattacharyya, Miller, D. C. , Gounaris, C. E. (2020). Under Review.

3 iterations 
of GRCS

Nominal Capture = 85%
Nominal Lean Loading = 0.225
Feasibility = 67%

Nominal Capture = 92%
Nominal Lean Loading = 0.186
Feasibility = 100%

Robustness achieved 
by increasing 

reboiler/condenser 
duties, which also lead 
to lower lean-loading 

(due to shorter 
regenerator column)

Robust design
guarantees CO2 capture 

in all scenarios; cost 
increase is kept to the 
minimum necessary to 

achieve this

Deteministic design
fails to meet CO2

capture performance 
requirement with a 33% 

probability

24



• Existing Plant Process Improvements & Optimization
• Design & Optimization of Complex, Interacting Systems

– Design space exploration
– Optimization of carbon capture systems
– Robust design to reduce technical risk

• Bridging timescales between power plant and grid
– Energy storage
– Insights on optimal bid strategies to increase revenue

Recent Applications and Impact
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Bridging Timescales in IDAES Enables Unique Analyses
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1. Elucidate complex relationships between resource dynamics and market 
dispatch (with uncertainty, beyond price-taker assumption)

2. Predict the economic opportunities and market impacts of emerging 
technologies (e.g., Coal FIRST, tightly-coupled hybrid energy systems)

3. Guide conceptual design & retrofit to meet current and future power grid needs

Grid Modeling

Expansion 
Planning

Grid / Market 
Simulation

Resource-Grid InteractionsHigh-Fidelity Process Modeling

Power 
Generation

Thermal
Energy

Electrical 
Energy

Electrical
Grid

Chemical Process

Electricity
Battery

Thermal 
Reservoir

Conc.       Solar Wind

Gas Turbine
Combined Cycle

Storage

Coal, Oil, or 
Bio-Fired

Nuclear Reactors 
(LWR, SMRs)

Hybrid System Demand Control

 Electricity Consumers
DC

PV Solar

Energy Storage

Dynamic Optimization and Control

Data Reconciliation & 
Uncertainty Quantification

Conceptual 
Design



Modeling Multiscale Resource and Grid Decision-Making
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Optimization problem(s) solved by resources (IDAES-PSE)

Optimization problem(s) solved by grid (Prescient)

Open source Production Cost 
Model (PCM)

Designed to closely mimic market 
clearing and settlement in U.S. 
electric markets

RTS-GMLC: open-source dataset 
developed by DOE to nominally 
mimic Southwest U.S.

Node Network

Wind Resources

Solar Resources

https://github.com/grid-parity-exchange/Prescient
https://github.com/GridMod/RTS-GMLC

NMPC = Nonlinear Model Predictive Control



• Evaluate the impact of pairing thermal 
generators with electricity storage

• Optimize combined generator profit, subject to
– Ramping limits
– Minimum up/down time constraints
– Storage energy balance 

• Under two operating modes: 
– Self-schedule
– Bidding

Thermal generators with energy storage

Forecast: Sampling strategies

Increasing em
phasis on tail scenarios

Coal 1
Coal 2

CCGT 1
CCGT 2

Oil 1
Oil 2

28



Quantifying the opportunity of integrated analysis

Model Participation 
Mode

Perfect Information
(M$)

MC Sampling
(M$)

Uniform Sampling
(M$)

Contour Sampling
(M$)

Thermal 
Generators

Bid 
Curve 51.8

(100%) 

46.2
(89.3%)

47.3
(91.3%) 

47.5
(91.7%) 

Self-
schedule

42.1
(81.3%) 

41.0
(79.2%) 

41.3
(79.6%) 

Thermal 
Generators + 

Storage

Bid 
Curve 54.1

(100%) 

46.6
(86.2%) 

48.2
(89.0%) 

47.9
(88.6%) 

Self-
schedule

43.6
(80.5%) 

41.3
(76.3%) 

42.5
(78.5%) 

Bidding (direct market participation) is more robust to market price uncertainty.
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Hybrid system tracked market dispatch with 30% less ramping
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Market Dispatch Optimal Operating 
Policy

Storage

Generator

Coal Generator
(102 Steam 3 in RTS-GMLC)

Generic Energy Storage
(88% round trip efficiency)

Electricity 
Grid / 

Market
(RTS-GMLC System)

Idealized 
Hybrid 
System



Optimize Bidding Strategy for Coal Steam 3 Generator

31Data: RTS-GMLC, https://github.com/GridMod/RTS-GMLC

Steam 3 Generator

Bus 102 RTS-GMLC System

158 generators (42% dispatchable)
14,550 MW capacity (54% dispatchable)

76 MW
32.6% efficient (full capacity)

Large 
Shortfall in 
Renewable 
Power on 
Day 3 @ 

11pm



Optimal Bid Changes Dispatch & Increases Revenue
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…but it induces an extra 
price spike @ 11pm on Day 3.

Optimizing the bid curves for 102 Steam 3 
generator causes only minor changes in 
its dispatch schedule from the market…

32
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Changes in a single generator impacts entire network

Combined Cycle 1 plant at 
Bus 118 is OFF in Day 3.

Combined Cycle plants at 
Busses 221 and 321 are 

dispatched at 100% at 11pm.

There is a shortfall at 11pm 
(not enough generation) 

which cases the price spike.

33



• Existing Plant Process Improvements & Optimization
• Improved minimum operating load by 44%
• Opportunity to increase overall efficiency by 2%

• Design & Optimization of Complex, Interacting Systems
– Design space exploration

• Reduced energy demand by >40% through automated exploration of 42 million alternatives
– Optimization of carbon capture systems

• Reduced operating cost by 15-18%
– Robust design to reduce technical risk

• Inherently robust against uncertainties in the core process thermophysical properties 
• Bridging timescales between power plant and grid

– Energy storage
• Increased revenue opportunities
• Reduced equipment wear and tear by >30%

– Insights on optimal bid strategies to increase revenue
• Captures complex interactions among generators & bulk power market
• Analysis of emerging flexible energy systems must capture interactions with the balance of the grid

Conclusions: Recent Applications and Impact
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Extended Applications of IDAES
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• October 1 @ 11-2:15 Eastern
– Plenary presentations

• October 8 @ 11-1:20 Eastern
– Topical presentations

• October 15 @ 11 – 1:20 Eastern
– Topical presentations

Virtual Joint Stakeholder Workshop
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• Overview Video
– https://youtu.be/28qjcHb4JfQ

• Tutorial 1: IDAES 101: Python and 
Pyomo Basics
– https://youtu.be/_E1H4C-hy14

• Tutorial 2: IDAES Flash Unit Model 
and Parameter Estimation (NRTL)
– https://youtu.be/H698yy3yu6E

• Tutorial 3: IDAES Flowsheet 
Simulation and Optimization; 
Visualization Demo
– https://youtu.be/v9HyCiP0LHg

Available Videos and Tutorials
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https://youtu.be/28qjcHb4JfQ
https://youtu.be/_E1H4C-hy14
https://youtu.be/H698yy3yu6E
https://youtu.be/v9HyCiP0LHg
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