

AN INTEGRATED APPROACH TO PREDICTING ASH DEPOSITION AND HEAT TRANSFER IN COAL-FIRED BOILERS

Gautham Krishnamoorthy

August 24th, 2020 DOE FE R&D Project Review Meeting University Coal Research

Acknowledgement: This research is being funded by the University Coal Research Program which is administered by DOE-NETL (Award #: DE-FE0031741)

Presentation Overview

- Project Objectives
- Background
- Solution
- Scope of Work
- Accomplishments
- Project Timeline
- Project Organization
- Acknowledgments
- Q&A

NORTH DAKOTA

Objectives

Advance **on-line** technology to **predict**, **monitor** and **manage** fireside ash deposition allowing for more efficient operations under a range of **load** conditions and **fuel property** variability

Management Strategy

- Fuel sorting and blending can be done upstream
- Optimize operations to compensate for load and fuel properties
- Optimized composition of coal delivered to each burner

Output Screen from CSPI-CT Microbeam's Existing on-line Technology UND NORTH DAKOTA

Background Information

- Inorganic transformations to form vapors, liquids and solids
- Partitioning in burner
- Vapor phase and particle transport mechanisms
- Ash sticking and deposit growth
- Sintering and strength development
- Heat transfer

Inorganic Transformations and Partitioning in Burner

Slag layer thickness as a function of fuel properties.

High ash retention – 50%

Ash formation during coal combustion

Cyclone Performance - Slag and Fly-Ash Partitioning

Deposit Formation – particle transport to walls and convective surfaces

Deposit Sticking and Shedding

properties on deposit growth. Progress in Energy and Combustion Science

Layered Deposit Formation – Fouling Deposit

Solution: Develop Functional Relationships for Incorporation into On-line Prediction Methods

Scope of Work

Task 1: Project Management and Planning

Task 2: Combustion Simulations within a Full-Scale Boiler (Otter Tail Power Company (OTPC))

Task 3: Simulation validation using ash deposition data from plant

Task 4: Combustion System Performance Indices and Coal Tracker (CSPI-CT) Tool Refinement

Task 1 Updates

- Kick-off Meeting October 7th, 2019
- 4 Quarterly Reports submitted to DOE.
- Milestone changes

Milestone	Task/ Subtask	Milestone Title and Description	Planned Completion Date	Verification Method			
3	Task 2	Combustion simulations within cyclone barrels	1/31/2020 10/31/2020	Completion of simulations within cyclone barrels encompassing 12 representative operational scenarios			
4	Task 2	Combustion simulations within a full-scale boiler employing the results from the cyclone barrel simulations	7/31/2020 1/31/2021	Completion of simulations encompassing 12 representative operational scenarios			

Task 2. Combustion Simulations within a Full-Scale Boiler (Otter Tail Power Company (OTPC))

- Database Development
- Cyclone Burner Modification and Testing
- Boiler Geometry Modification and Particle Tracking

Task 2. Slagging and fouling event specific database development and data analysis

- Database of Plant Operating Parameters/coal properties
- Performance data CSPI-CT
 - Heat Rate
 - Fireside performance indices
- 12 Cases for simulations
 - Load
 - Boiler Cleanliness
 - Coal Properties
 - Ash Content
 - Base/Acid Ratio (sodium Level)

Heat Rate

High Temperature Fouling - Index

Low Temperature Fouling - Index

Load Definition Selection

Task 2. Modifications to Cyclone Geometry

NORTH DAKOTA

Cyclone Performance Comparison

Fuel Ash and Supplementary Fuel Flow

Fuel Base to Acid Ratio and Supplementary Fuel Flow

Cyclone Operational Parameter Selection

- Worked with OtterTail Power's Coyote Station to identify the plant operational data and as-delivered fuel properties associated with the time period during which Coyote faced slagging issues.
- As-delivered fuel properties data was used as input and predictions of as-fired fuel quality were made with the help of Microbeam's CoalTracker program.
- Fuel properties hourly averages were calculated and compared for each cyclone.
- A cyclone with high amount of supplemental oil flow was selected for further testing.

Task 2. Modified Boiler Geometry

End-to-End boiler simulation of fuel combustion (i.e., combustion within the cyclone barrel fully integrated with that within the boiler)

Fuel Particle Trajectories

NORTH DAKOTA

Net Radiative Flux

NORTH DAKOTA

Task 2 Accomplishments

- Construction of geometries of full-scale utility boilers
- Slagging and fouling event specific database development and data analysis
- Simulations of coal combustion the boiler units

Next Steps – Boiler CFD Model Test Matrix

No.	Na content/ Na flowrate	Load	Time since last shutdown/cleaning outage					
1	High	Full	30 Days after cleaning outage					
2	Medium	Full	30 Days after cleaning outage					
3	Low	Full	30 Days after cleaning outage					
4	High	Medium	30 Days after cleaning outage					
5	Medium	Medium	30 Days after cleaning outage					
6	Low	Medium	30 Days after cleaning outage					
7	High	Low	30 Days after cleaning outage					
8	Medium	Low	30 Days after cleaning outage					
9	Low	Low	30 Days after cleaning outage					
10	Medium	Full	15 Days after cleaning outage					
11	Medium	Full	30 Days after cleaning outage					
12	Medium	Full	45 Days after cleaning outage					

Task 4. Combustion System Performance Indices and Coal Tracker (CSPI-CT) Tool Refinement

Project Schedule

		2019)			2020)			2021				2022	2		
Task ID Task Name		Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4
1 Project Management Planning																	
1	Project kick-off meeting																
2	Combustion Simulations of the cyclone barrel																
2	Combustion simulations of the full- scale boiler																
3	Thermal modeling refinement with validation against data from plant																
3	Deposition modeling refinement with validation against data from plant																
4	CSPI-CT Tool Refinement																
4	Installation, testing, and performance assessment of the CSPI-CT Tool																

Project Organization

UND UNIVERSITY OF NORTH DAKOTA

Take-Home Message(s)

Predicting ash deposition: This is almost as complicated as it gets...

- Its important to have high-fidelities in:
 - o coal PSD
 - particle radiative properties
 - o gas radiative properties
 - o ash composition
- However, complexity in predicting ash deposition (capture criteria) depends on: fuel, boiler configuration, temperature zone (where the deposition occurs)
- Multiphase turbulent combustion + fuel properties and flow rates
- But our understanding of physical and chemical transformations associated with ash deposition is improving
- <u>Close interactions between</u>: boiler personnel, coal quality experts and CFD practitioners are necessary

Acknowledgements

- This research is being funded by the University Coal Research Program which is administered by DOE-NETL (Award #: DE-FE0031741)
- Otter Tail Power Company Providing data on fuel properties and plant operations.

Questions?

