AOI 2: Modularization of Ceramic Hollow Fiber Membrane Technology for Air Separation

DE-FE0031473

Pl: Xingjian (Chris) Xue
University of South Carolina
Columbia SC 29208
Email: Xue@cec.sc.edu

PO: Diane R. Madden
National Energy Technology Laboratory
U.S. Department of Energy
Objective of project

• *Develop membrane stack and module for air separation and oxygen production using ceramic hollow fiber membrane technology*

Strategic alignment of project to Fossil Energy objectives

• **Cost of Energy and Carbon Dioxide (CO2) Capture**
 • Pure oxygen instead of air for combustion of power plant produces CO2, no need to separate nitrogen from down stream;
 • Reduce the cost and simplify the system for CO2 capture.

• **Power Plant Efficiency Improvements**
 • Pure oxygen instead of air increases efficiency of power plant;
 • Cost-effective, reliable technologies to improve the efficiency of coal-fired power plants.
Project Description

Status at beginning of project

– Single membrane fabrication and performance testing;
– Single membrane design with traditional architecture, material system, and microstructure;
– No stack/module designs with traditional single membrane cells.

Technology benchmarking (for air separation and oxygen production)

- Cryogenic distillation;
- Pressure swing adsorption;
- Ceramic permeation membrane;
 - Simple system: dense mixed conducting membranes;
 - Producing high purity oxygen from air;
 - Economically competitive technology.
Current Status of project

• New membrane design with novel architecture, material system, and microstructure:
 ✓ Developed new membrane functional materials;
 ✓ Determined material for device substrate;
 ✓ Developed and optimized process for membrane device fabrication;
 ✓ Performed preliminary oxygen permeate test.

• Finished tasks 2.1, 2.2, and 3.1

• No change of project goal/objectives;

• Market need: in addition to coal-fired power plants, oxygen has wide applications in industries
Conferences attended and publications

- “Fabrication and characterization of an asymmetrical hollow fiber membrane for air separation and oxygen production”, 4th Global Congress & Expo on Materials Science and Nanoscience, Amsterdam, Netherlands, Oct. 2018. (invited talk)
Mixed conducting membrane materials

- SrCoO$_{3-\delta}$ is a good mixed conductor;
- Very complicated secondary phases are formed during synthesis process; difficult to obtain pure phase;
- Partial substitution of Sr by Yb may effectively stabilize the material phase, exhibiting a higher symmetrical perovskite phase.
Thermal stability of the materials

- Both SYbC5 and SYbC10 demonstrated excellent thermal stability.
- Polarization resistance for surface oxygen exchange decreases with increasing temperatures (thermal activation process).
- Increasing Yb dopant from 5 mol% to 10 mol% resulted in a decrease in activation energy of the process;
Mixed conducting membrane materials

- Surface adsorption: \(O_{2,g} \leftrightarrow O_{2,ad} \);
- Dissociation: \(O_{2,ad} \leftrightarrow 2O_{ad} \);
- Charge transfer: \(O_{ad} + 2e^- + V_0^\cdot \leftrightarrow O_0^\times \);
- Reaction order: (a) close to 0.25, charge transfer process (high frequency process);
- Reaction order: (b) close to 0.5, primarily contributed by dissociation (low frequency process)

- Limiting steps of surface exchange processes
 - (a) high frequency charge transfer process;
 - (b) low frequency molecular dissociation process;
• Durability test was carried out using a symmetrical cell with SYbC10 electrode at 700 °C in air for ~ 300 h;
• Polarization resistance R_p fluctuates in the first 50 hours, then increases a little bit between 50 and 175 h. Beyond 175 h, R_p gradually approaches an equilibrium state.
- R_h: scatters in the 1st 100 hrs, but gradually stabilizes (to a value a little bit lower than those recorded at the start of the test).
- R_l: fluctuates in the 1st 25 hrs, and stabilizes around 300th h;
- R_h: associated with charge transfer process (oxygen anion formation and incorporation into vacancy). In the 1st 100 hrs, reorganization and stabilization of surface vacancy distribution; beyond 100 hrs, surface vacancy and electronic structure stabilize.
- R_l: related to dissociation process of adsorbed O2. Surface Sr segregation leads to certain change of surface catalytic property (1st 25 hrs, a small amount of surface Sr segregation; beyond 25 hrs, surface Sr segregation reaches an equilibrium state)
Stability in CO2 containing air: cycling between pure air and 5% CO2-air
- Ro is stable, only shows a bit thermal aging process; Rp sensitive to CO2 but reversible;
- Due to adsorption/desorption of surface carbonaceous species and reversible reactions.
Fabrication of hollow fiber substrates:
- Process optimization
- Radially well-aligned micro-channels, open at the inner surface for facile gas diffusion
Fabrication of hollow fiber membrane

Process optimization of functional layer fabrication
• Solution/slurry compositions
• Coatings
Fabrication of hollow fiber membrane

Sintering behavior and modifications:
- Sintering behaviors of substrates are systematically measured;
- Sintering behaviors are modified with a set of sintering aids.
Fabrication of hollow fiber membrane

Contents of sintering agent may significantly affect sintering behavior of substrates.
Fabrication of hollow fiber membrane

Sintering curves allow us to
- Match sintering behavior of substrate with functional layers;
- Critical step to densify functional layer while remaining microstructure of substrate.
Fabrication of hollow fiber membrane
Fabrication of hollow fiber membrane
Oxygen Permeation Testing Results

- Feed side: ambient air;
- Permeate side: Argon sweep gas;
- Operation in intermediate temperature 750 – 850 °C;
- Permeation flux increases with temperature, process is thermally activated;
- Not sensitive to flow rate of sweep gas, oxygen evolution is not a limiting step.

Ea = 62.12 J/mol
Future work/next steps

- Refinement and finish up optimizations of single membrane cell fabrication and characterization;
- Systematic oxygen permeation testing and characterization of single membrane cells;
- Assembly of stacks with single membranes;
- Stack testing and characterizations;
- Modeling and analysis.
Market Benefits/Assessment

– Oxygen has wide applications in industries:
 • Energy (oxygen combustion/gasification, improve efficiency, enable CO2 capture, etc.);
 • Manufacturing (metal production, glass production, welding, plasma cutting, pulp and paper production, refining)
 • Environmental (water and wastewater treatment);
 • Healthcare
 • Others (chemicals, pharmaceutical and biotechnology, etc.)

– Oxygen needs are/will be intensive in these industries.
 • Technology advancement and/or Innovations are needed to fulfill these needs.

– The technology studied in this project:
 • Low cost, reliable technology for high purity oxygen production from air;
 • Has up-scaling flexibility for oxygen production at different scales.
Technology-to-Market Path

— The technology, if successful, can be directly integrated into gasification based power plant system to achieve FE goals/objectives:
 • As an oxygen supply module integrated into the system (replace air supply unit);
 • Improve efficiency of power plant system (no nitrogen involvement);
 • Enable cost-effective, efficient, and reliable CO2 separation and capture.

— The technology can also be a stand-alone oxygen production unit/system
 • Can be scaled for oxygen production at different scales (directly transferred to market);
 • Relevant companies (Praxair, Airgas) might be interested in this technology (integrated into their oxygen production systems);

— Remaining technology challenges:
 • Fabrication process optimization for single membranes;
 • Stack assembly, testing, and characterization;
 • Modeling and analysis.
Concluding Remarks

- **Applicability to Fossil Energy and alignment to strategic goals**
 - Low cost technology for pure oxygen production from air;
 - Up-scaling flexibility (stack, module);
 - Can be used as oxygen supply unit, incorporated into gasification based power plant system; (replace air supply unit)
 - Improve efficiency of power plant system;
 - No nitrogen involved in the system, enable cost-effective, efficient, and reliable CO2 separation/capture.

- **Project’s next steps and current technical challenges**
 - Keep doing what were planned in the project;
 - Single membranes: fabrication, testing, characterization;
 - Stack assembly, testing, and characterization;
 - Modeling and analysis
 - Current technical challenges;
 - Technical challenges could pop-up during the course;
 - E.g.: takes longer time than planned due to complexity of process and various uncertainties.
Acknowledgments

DE-FE0031473

Post-docs and Graduates