September 2, 2020

#### Frederick F. Stewart, Ph.D.

Balu Balachandran, Ph.D., ANL

Christopher J. Orme, INL Tae H. Lee, Ph.D., ANL John R. Klaehn, Ph.D., INL Birendra Adhikari, Ph.D., INL

## **Advanced Air Separations Using Novel Mixed Matrix Membranes**

2020 Annual Project Review Meeting for Crosscutting, Rare Earth Elements, Gasification and Transformative Power Generation, September 2, 2020, Virtual from Idaho Falls, ID

*Project # FWP-B000-18-061* 



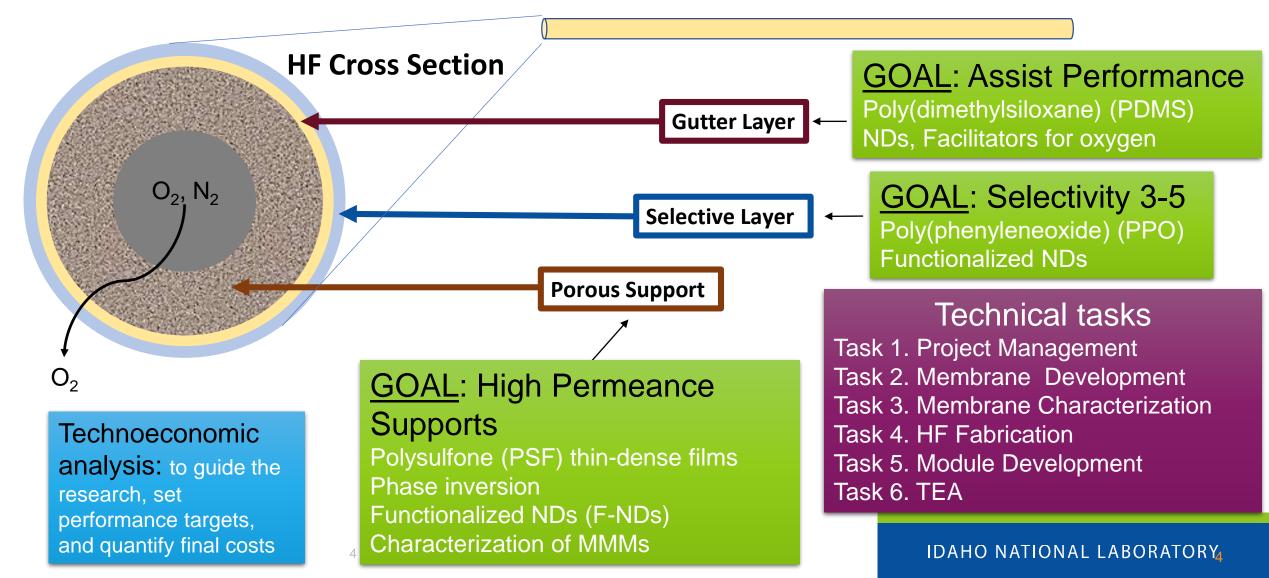


### **Project Description and Program Alignment**

<u>Purpose</u>: Develop a novel hollow fiber membranebased approach to deliver a stream of oxygen enriched air ( $O_2$  90-95%) suitable for use in a 1-5 MWe coal fired small modular power plant

### Aligned with NETL program goals:

- Advanced Energy Systems (AES) program: improving the efficiency of coal-based power systems, increasing plant availability, and maintaining the highest environmental standards.
- This project supports the Gasification Systems Program element of AES that is developing advanced technologies to reduce the cost and increase the efficiency of modular systems.




# **Project Objectives**

- Barrers and Challenges
  - Poor permeance and selectivity of polymeric membranes
  - How to convert from flat sheet to hollow fiber formats that enable scale-up
    - How to best use nanodiamonds as additive to improve properties
    - Balance the need for minimum layer thicknesses against defect formation
    - The need to understand material durability

## **Project Task Overview**

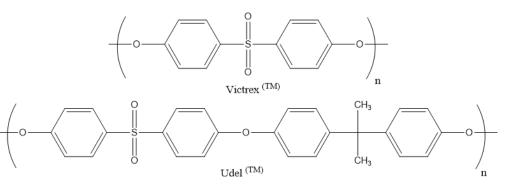
### <u>Manufacturable and Durable</u> <u>Hollow Fiber = Final Product</u>



### Technology Benchmarking – Polysulfone (PSF) Mixed Matrix Membranes (MMMs)

| Membrane<br>Material                 | O <sub>2</sub> Permeability<br>(Barrer) | O <sub>2</sub> /N <sub>2</sub><br>Selectivity | Additive                                        | Reference |
|--------------------------------------|-----------------------------------------|-----------------------------------------------|-------------------------------------------------|-----------|
| PSF/CNF mixed<br>matrix              | 2.2                                     | 3.86                                          | Carbon Nanofiber                                | 1         |
| PSF with 20% silica<br>nanoparticles | 5.0                                     | 4.50                                          | Silica                                          | 2         |
| PSF with 5% CX<br>Fiber              | 1.78                                    | 5.95                                          | Pyrolytic Carbon Xerogel<br>(PDMS gutter layer) | 3         |
| PSF with 5% CX<br>Fiber              | 17.5                                    | 1.13                                          | Pyrolytic Carbon Xerogel (no gutter layer)      | 3         |
| Pure PSF                             | 1.2                                     | 6                                             | None                                            | 4         |

<u>From the limited</u> <u>selection of</u> <u>literature data, the</u> <u>trade-off between</u> <u>permeability and</u> <u>selectivity is</u> evident.


<u>None are produced</u> <u>commercially as</u> <u>modules</u>

1. Kiadehi, A.D.; Rahimpour, A.; Jahanshahi, M.; and Ghoreyshi, A.A. (2015). "Novel carbon nano-fibers (CNF)/polysulfone (PSf) mixed matrix membranes for gas separation", Journal of Industrial and Engineering Chemistry, 22, 199-207.

2. Golzar, K.; Amjad-Iranagh, S.; Amani, M.; and Modarress, H. (2014). "Molecular simulation study of penetrant gas transport properties into the pure and nanosized silica particles filled polysulfone membranes", *Journal of Membrane Science*, 451, 117-134.

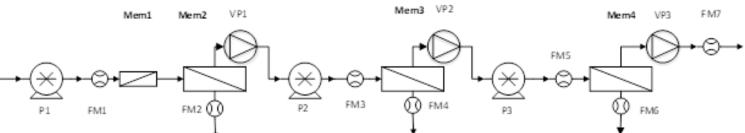
3. Magueijo, V.M.; Anderson, L.G.; Fletcher, A.J.; and Shilton, S.J. (2013). "Polysulfone mixed matrix gas separation hollow fibre membranes filled with polymer and carbon xerogels", *Chemical Engineering Science*, 92, 13-20.

4. Robeson, L.M. (1999). "Polymer Membranes for Gas Separation", Current Opinions in Solid State and Materials Science, 4, 549.



### Technology Benchmark: Polymer-ND MMMs for Gas Separations

| Membrane Polymer                      | Permeability<br>(Barrer) | Selectivity      | Additive     | Reference |
|---------------------------------------|--------------------------|------------------|--------------|-----------|
| P84 co-polyimide                      | $H_2 = 8.0$              | $H_2/CO_2 = 3.6$ | None         | 1         |
|                                       | $H_2 = 6.7$              | $H2/CO_2 = 4.1$  | 1% ND (COOH) |           |
| Poly(phenyleneoxide)                  | O <sub>2</sub> = 33.2    | $O_2/N_2 = 3.25$ | None         |           |
| (PPO)                                 | 31.8                     | 3.61             | 1% ND (COOH) | 2         |
|                                       | 29.7                     | 3.81             | 3% ND (COOH) |           |
|                                       | 28.4                     | 4.06             | 5% ND (COOH) |           |
| Poly(phenylene-                       | $O_2 = 0.032$            | $O_2/N_2 = 5.9$  | None         |           |
| isophtalamide)                        | 0.029                    | 6.3              | 1% ND (COOH) | 3         |
| · · · · · · · · · · · · · · · · · · · | 0.029                    | 10.0             | 3% ND (COOH) |           |
|                                       | 0.017                    | 1.2              | 5% ND (COOH) |           |


1. Pulyalina, A.; Polotskaya, G.; Rostovtseva, V.; Pientka, Z. and Toikka, A. (2018), *Polymers*, 10, 828-841.

2. Polotskaya, G.A.; Avagimova, N.V..; Toikka, A.M.; Tsvetkov, N.V.; Lezov, A.A.; Strelina, I.A.; Gofman, I.V.; and Pientka, Z. (2018), *Polymer Composites,* DOI 10.1002/pc24437.

3. Avagimova, N.; Pototskaya, G.; Toikka, A.; Pulyalina, A., Moravkova, Z., Trchova, M.; and Pienka, Z. (2018), *Journal of Applied Polymer Science*, 135,46320. In three differing reports, all experiments showed that NDs tended to decrease permeability and selectivity

### **TEA** as a Method to Define Benchmarks

- Question: What is the best goal for membrane performance?
- Technoeconomic Analysis (TEA)
  - User defined parameters
  - Included labor, materials, energy, financing
  - Sensitivity Analysis
  - System Design



Process flow diagram of gas separation system

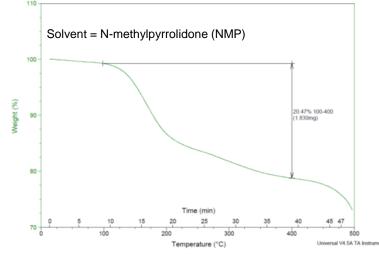
| Parameter                                    | Input values                   |  |
|----------------------------------------------|--------------------------------|--|
| Number of Membrane Modules                   | 1,2 or 3                       |  |
|                                              | stainless steel, carbon steel, |  |
| Material of the membrane module              | polypropylene or polyethylene  |  |
| $O_2/N_2$ selectivity of the membrane        | 2-10                           |  |
| O <sub>2</sub> permeance, GPU                | 100-10000                      |  |
| Inlet volume of air, L/h                     | 100,000 - 16,000,0000          |  |
| Pressure of inlet air, psi                   | 25-75                          |  |
| Temperature of inlet gas, °C                 | 22                             |  |
| Relative Humidity of input air, %            | 40                             |  |
| Particles in air, ppm                        | 3000                           |  |
| Hours of operation per year                  | 8000                           |  |
| Permeation factor for O <sub>2</sub>         | 0.9                            |  |
| Permeate pressure, psi                       | 14.7                           |  |
| Rejectate pressure, psi                      | 14.7                           |  |
| Permeate temperature, °C                     | 22                             |  |
| Rejectate temperature, °C                    | 22                             |  |
| Membrane effective thickness, µm             | 0.1                            |  |
| Temperature of pump, °C                      | 22                             |  |
|                                              | stainless steel, carbon steel, |  |
| Material of the pump                         | polypropylene or polyethylene  |  |
| Pump efficiency                              | user chooses                   |  |
| Delivery pressure of a compression pump, psi | 25                             |  |
| Vacuum pump pressure, psi                    | 5                              |  |
| Membrane cost, \$/m <sup>2</sup>             | 5-50                           |  |
| Membrane installation factor                 | 0.5                            |  |
| Electricity cost, \$/kWh                     | 0.04-0.24                      |  |
| Air cost, \$/kg                              | 0.0001                         |  |

# **Best-case Scenarios for 90%+ O<sub>2</sub> and Comparison to Other Methods**

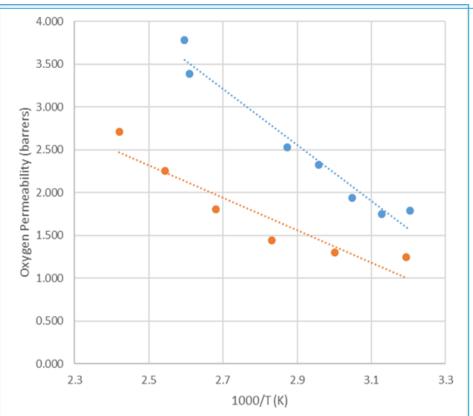
Product Gas Cost as a Function of # of Stages for 100 tonne/day production (1-5 MWe scale)

| Number of Stages | Gas Product Cost | Permeance (GPU) | Selectivity |
|------------------|------------------|-----------------|-------------|
| Two              | \$58/tonne       | 1000            | 5.5         |
| Three            | \$68/tonne       | 1000            | 3.2         |

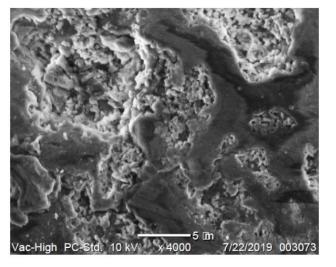
### Literature Data for Competing Technologies (large scale optimum installations)


| Method                    | Gas Product Cost | O <sub>2</sub> Concentration | Scale                |
|---------------------------|------------------|------------------------------|----------------------|
| Cryogenic Distillation    | \$45/tonne       | 95%+                         | 3000-4000 tonnes/day |
| Pressure Swing Absorption | \$65/tonne       | 90%                          | 1000 tonnes/day      |

### Initially, Nanodiamonds in Thin Film PSF Yielded Little Value

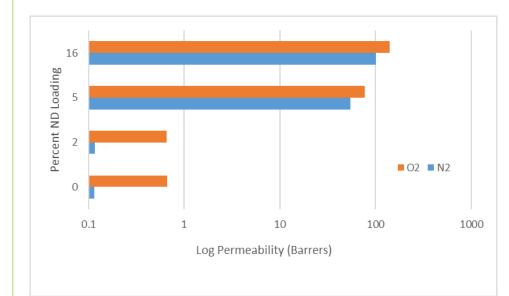

### Initial Experiments with COOH-NDs

| Membrane composition<br>(UDEL PSF Cast from NMP) | O <sub>2</sub> Permeability (Barrers) | O <sub>2</sub> /N <sub>2</sub> Selectivity | Notes                                      |
|--------------------------------------------------|---------------------------------------|--------------------------------------------|--------------------------------------------|
| No NDs                                           | 0.73                                  | 6.1                                        |                                            |
| 2% 5nm-COOH ND                                   | 0.72                                  | 6.5                                        |                                            |
| 5% 5 nm-COOH ND                                  | 0.41                                  | 2.6                                        |                                            |
| 10% 5 nm-COOH ND                                 | NA                                    | NA                                         | Membrane shattered<br>Testing not possible |


# Solvent removal from thin-films was a challenge



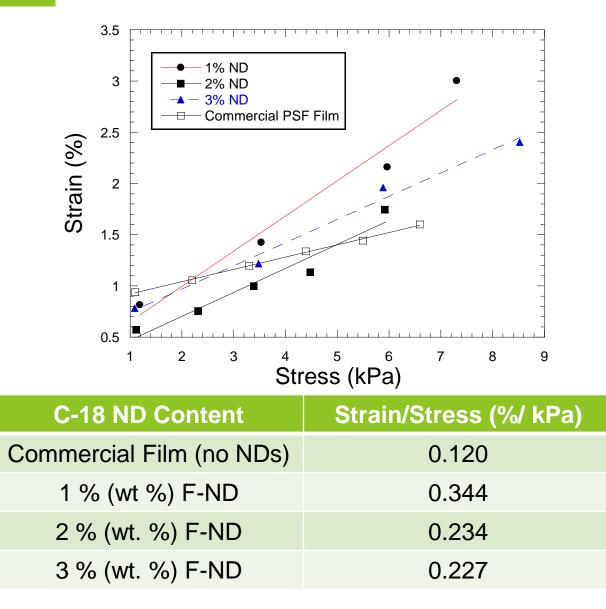
At 5% loading, both permeability and selectivity dropped, and at 10%, the membrane failed. Also, at these loadings, cloudy areas in the films suggested selfassembly of NDs PSF-F-NDs did yield small improvement in  $O_2$  permeability with solvent removed to <2 %

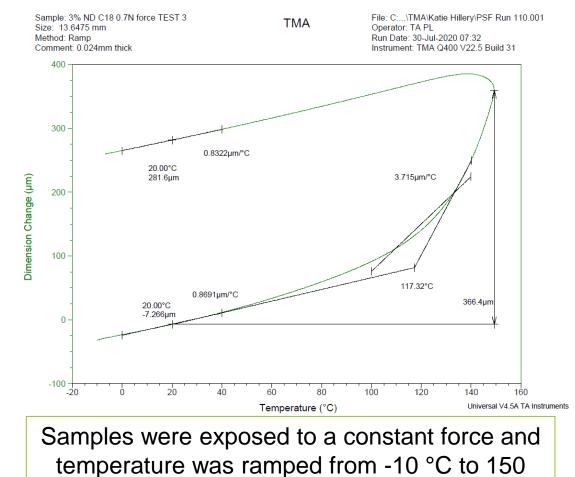



### **F-NDs have better compatibility with PSF**



SEM showing ND induced pores and polymer regions


- Thin films are formed to 2%
  ND loading
- At 3% and above, microporosity is formed
- Microporous regions tend to increase permeance at the cost of selectivity




Significant increase in  $O_2$  permeability with > 5% ND content

Selectivity falls from 6 to 1.4

### Polymer-ND affinity: <u>F-NDs</u> alter thermally induced creep

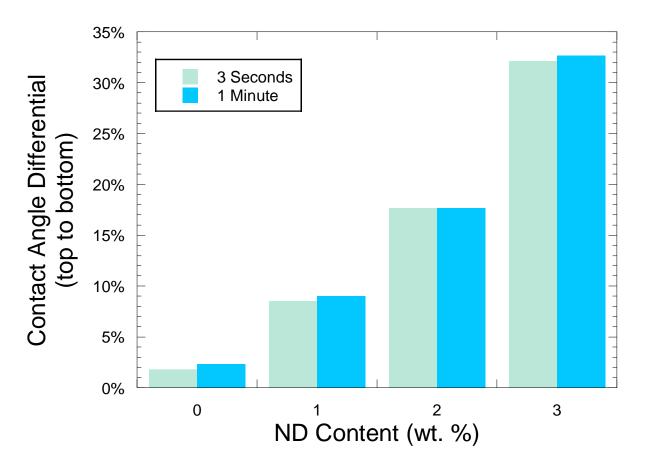


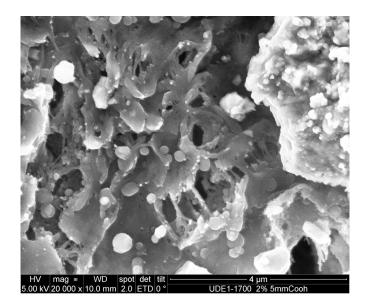


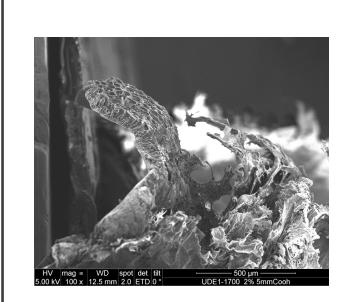
°C, and then back to room temperature

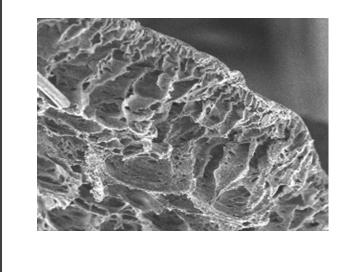
Plasticization is seen with 1 % of F-NDs; however, > 1 % appears to make the material more brittle

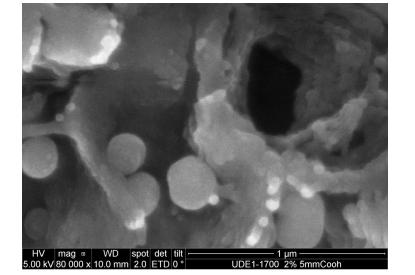
### NDs do not homogenously distribute in thin films


The small difference in the 0 % F-ND membranes (blank) reflect surface morphology differences between the top and bottom surfaces


The differential increases with higher F-ND loadings where the bottom surfaces change little compared to the blank


Hydrophilicity may increase with increased ND content


Phase inversion should result in a more even distribution of particles


SEM studies pending











# Successful Phase Inversion of 2% ND/PSF

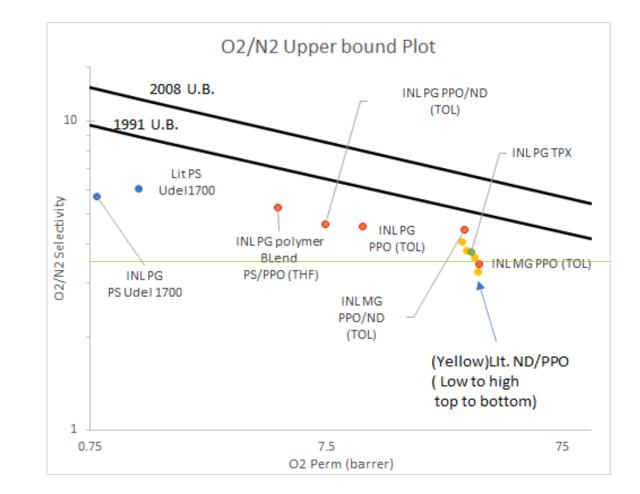
### **Phase Inverted PSF-ND gives high O<sub>2</sub> permeance**



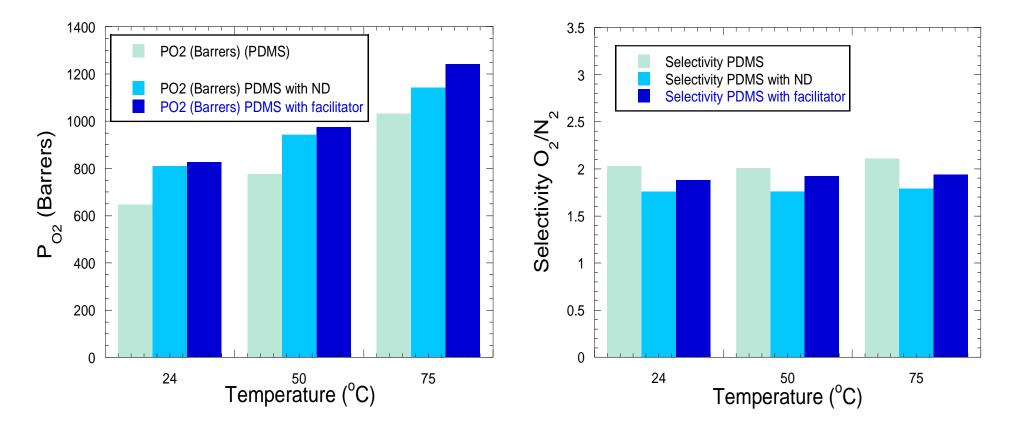


Phase inversion yields an opaque film

| Initial Phase Inverted<br>Membranes<br>(PSF Cast From NMP) | O <sub>2</sub> Permeance<br>(GPU) | O <sub>2</sub> /N <sub>2</sub> Selectivity |
|------------------------------------------------------------|-----------------------------------|--------------------------------------------|
| No ND's                                                    | 52054                             | 0.91                                       |
| 2% F-ND<br>(No Heat)                                       | 48802                             | 0.91                                       |
| 2% F-ND<br>(Heated to 100 C/10 min)                        | 57007                             | 1.09                                       |

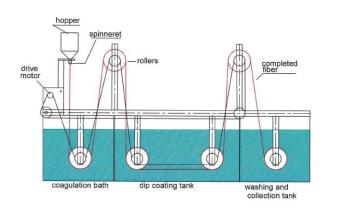

Dense films typically are transparent

### Selective Layer Performance Improvements – PPO and Blends


Summary of PPO performance (selectivity vs O2 permeability).

Legend:

- U.B. = Robeson theoretical upper bound in permeability/selectivity correlation published in 1991 and 2008; tol = toluene casting solvent;
- THF = tetrahydrofuran casting solvent;
- PS = polysulfone;
- Udel 1700 = commercial brand of PSF;
  PG = pure gas testing method;
- MG = mixed gas analysis method
- Green line indicates minimum selectivity need to reach the TEA performance goals




### **Gutter Layer: NDs give 25 % improvement in O<sub>2</sub> perm**



 $O_2$  permeability (left) and  $O_2/N_2$  selectivity (right) of PDMS membranes neat, and with NDs and a facilitator as a function of temperature.





### **Preparing Project for Next Steps**

#### Accomplishment Summary

- TEA is complete and is guiding research
- Created high permeance ND-containing supports
- PPO is a promising selective layer exceeds minimum selectivity
- 25 % improvement is gutter layer permeance
- Continue to investigate Permeability and Selectivity as a function of:
  - Phase inversion and coating
  - ND loading
  - ND selection F-ND
  - Polymer substrate gutter, and selective layers
- Design HF formation process (at left)
  - Lab-scale HFs
  - Spinneret Design
  - Process design

### **Preparing Project for Next Steps**

#### Market Benefits/Assessment – Value not just limited to gasification

- Market is mature for membrane systems giving 99.5% N2 or 30-50% O2
- Membrane systems yielding 90-95% O2 not mature
- Growing market \$1.3 billion by 2025, Predicted Compound Annual Growth Rate (CAGR) of 8.4% (2015-2025).\*
- Applications for low-cost oxygen enrichment: medical (45%), enhanced combustion (20%), water treatment (25%)

### Technology to Market Path

- Protection of Intellectual Property (Provisional Patent filed in February 2020)
- Engage INL Technology Deployment and Industrial Engagement staff to support agreements management and licensing, market research, etc.
- Bridging from this project to industry
  - ARPA-E
  - SBIR, TCF
  - SPP, CRADA, others

\* Creedence Research, 2018 (www.credenceresearch.com/press/global-oxygen-enrichedmembrane-market)

### Concluding Remarks

- **Overall Project Objectives:** Successfully demonstrated improvements in all three parts of the HF membranes, complete TEA guides the work.
- Applicability of the Technology to FE objectives: Air separation technology to be utilized in advanced fossil energy based modular energy systems that will make substantial progress toward enabling cost-competitive, coal-based power generation with near-zero emissions
- Project Status Project began 12/1/2018. Currently in BP2.
- Budget Period 1 Technical Milestones: Completed Onschedule
  - Complete initial flat sheet membrane formation study to demonstrate defect-free films can be made, optimize the ND loading (10/30/2019)
  - Complete study of flat sheet membrane suitable for publication (11/30/2019)
  - **Budget Period 2 –** Three-plus month delay due to COVID-19 related shut down of lab work



### Acknowledgements

- DOE National Energy Technology Laboratory
  - PM: K. David Lyons
  - FPM: Venkat Venkataraman
- Argonne National Laboratory
  - Dr. Balu Balachandran
  - Dr. Tae H. Lee
- Idaho National Laboratory
  - Christopher J. Orme, INL
  - John R. Klaehn, Ph.D., INL
  - Birendra Adhikari, Ph.D., INL
  - James P. Pittman, INL
  - Andrew Han, summer 2020 intern, Penn State, PA
  - Kaitlyn Hillery, summer 2020 intern, Fort Hays State, KS