High Selectivity and Throughput Carbon Molecular Sieve Hollow Fiber Membrane-Based Modular Air Separation Unit for Producing High Purity O_2

FE-1049-18-FY19
Rajinder (Raj) Singh
Los Alamos National Laboratory

2020 Gasification Project Review Meeting
DOE – Fossil Energy/NETL
September 2nd, 2020
Project Overview

Award Name: High Selectivity and Throughput Carbon Molecular Sieve Hollow Fiber Membrane-Based Modular Air Separation Unit for Producing High Purity O₂

Award Number: FE-1049-18-FY19

Project Manager: Venkat K. Venkataraman

Overall Program Goal: Development of high flux polybenzimidazole-derived carbon molecular sieve hollow fiber membranes having O₂/N₂ selectivity > 20 for high purity O₂ production to meet the needs of a modular 1-5 MWe gasification system
Team Members

Membrane Design, Fabrication and Evaluation
- Rajinder P. Singh
- Kathryn A. Berchtold
- John A. Matteson
- JongGeun Seong
- Jeremy C. Lewis

Process Modeling and Simulations
- Joel D. Kress
- Troy M. Holland
- Kamron G. Brinkerhoff
- Brendan J. Gifford
- Alexander J. Josephson
- Christopher S. Russell

Modular System Design
- Todd A. Jankowski
DOE Advanced Energy Systems Program

Gasification systems program

- Coal-based power generation with near-zero emissions
- Reduce the cost and increase efficiency exploiting Radically Engineered Modular Systems (REMS) concepts for gasification system
- Leverage mass production and learning curve in lieu of traditional scale-up

Advanced technology need:

- Energy efficient air separation technology for high purity O\(_2\) production
- Program Targets:
 - 90-95 vol% purity O\(_2\)
 - Low cost and operational efficiency relative to the state-of-the-art technology

Images: DOE/NETL website
Cryogenic distillation is *the* industrially preferred technique for large-scale, high purity O\(_2\) production

- Cryogenic technology is energy inefficient at small scale
- Scale dependent estimated specific energy consumption 23 to 63 KJ/mol

Membrane-based air separation processes have advantages over competing technologies

- Tailorable output stream conditions (T&P) to match downstream process
- Improved energy economics

Ref: Air Products Inc. & Air Liquide Inc.
Achieving High O₂ Purity With Membranes

- A multi-stage membrane process is necessary to achieve high purity O₂ with realistically achievable membranes
 - O₂ enriched permeate from 1st membrane stage is further purified using additional membrane stages to achieve target O₂ purity of 90-95%
 - A 2-stage design enables high O₂ purity, but advantages of additional staging and alternative flow configurations are also be explored
 - Inter-stage compression required for driving force

Multi-stage Membrane Separation Process to Achieve High Purity

O₂ Selective Membrane Materials

Membrane materials: current state-of-the-art

- O₂/N₂ selectivities approaching 30 for polymer-derived carbon molecular sieve (CMS) membranes achieved

![Graph showing O₂/N₂ selectivity and permeability across different materials and years.]

References

Membrane Development Approach

- Polybenzimidazole (PBI)-derived carbon molecular sieve membranes for high O_2/N_2 selectivity

 - Tightly packed PBI molecular structure resulting from H-bonding and π-π stacking imparts molecular sieving character

 - Base polymer (m-PBI) has high selectivity for gas pairs (e.g. $H_2/N_2 \geq 100$; $O_2/N_2 = 2$)

 - Further enhancement of molecular sieving properties via controlled pyrolysis proposed to create ultra-micropores

 - PBI pyrolysis preliminary work: O_2/N_2 selectivity increased from 2 to 30

 [Ref: S.S. Hosseini et al. / Separation and Purification Technology 122 (2014) 278–289]

 [Ref: Rungata et al., Carbon 115 (2017) 237-248]
Project Objectives

- A membrane-based, modular air separation technology for high purity O₂ production
 - Develop CMS materials derived from PBI materials (PBI-CMS) to achieve the desired material transport characteristics
 - Develop PBI-CMS hollow fiber membranes having the desired membrane performance characteristics
 - Conduct process design and analysis and techno-economic analysis based on PBI-CMS hollow fiber membranes for air separation and benchmark against the industry standard cryogenic technology
 - Design a modular ASU with integrated peripheral equipment (e.g., blower, vacuum pump, compressor) for high purity O₂ production scaled to meet the needs of a 1-5 MWe gasification system
Membrane Material & Hollow Fiber Development
Base Hollow Fiber Membrane Preparation

Base PBI HFMs having asymmetric morphology fabricated utilizing lab-scale liquid-liquid demixing based fiber spinning capability

PBI Membrane Pyrolysis

- Pyrolysis conditions have a tremendous influence on the gas separation performance of the polymer derived CMS membranes
 - Focused efforts on development and optimization of PBI pyrolysis protocols

- Successfully fabricated PBI-CMS membranes in industrially attractive platform

Pyrolysis Parameters
- Temperature (500 to 900 °C)
- Ramp rate and dwell time
- Environment (e.g. inert, vacuum)
Tailoring Separation Performance: Pyrolysis Temperature

Support porous morphology collapse observed during pyrolysis
- Dimensional shrinkage by 30%
- Permeance changes with retained O_2/N_2 selectivity

Temperature profiles for pyrolysis

Morphology change

<table>
<thead>
<tr>
<th>Dimen.</th>
<th>580 °C</th>
<th>650 °C</th>
<th>750 °C</th>
<th>850 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD (μm)</td>
<td>357</td>
<td>343</td>
<td>324</td>
<td>318</td>
</tr>
<tr>
<td>ID (μm)</td>
<td>303</td>
<td>289</td>
<td>272</td>
<td>273</td>
</tr>
<tr>
<td>WT (μm)</td>
<td>27</td>
<td>26</td>
<td>26</td>
<td>23</td>
</tr>
</tbody>
</table>
Tailoring Separation Performance: Pyrolysis Atmosphere

Vacuum applied during pyrolysis

Relative to inert gas purging, additional shrinkage by 33% was observed under vacuum

Higher O₂ permeance achieved

Temperature profiles for pyrolysis

Morphology change

Dimensional changes

<table>
<thead>
<tr>
<th>Dimen.</th>
<th>580 °C</th>
<th>650 °C</th>
<th>750 °C</th>
<th>850 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD (μm)</td>
<td>340</td>
<td>340</td>
<td>304</td>
<td>333</td>
</tr>
<tr>
<td>ID (μm)</td>
<td>290</td>
<td>288</td>
<td>268</td>
<td>286</td>
</tr>
<tr>
<td>WT (μm)</td>
<td>23</td>
<td>27</td>
<td>18</td>
<td>21</td>
</tr>
</tbody>
</table>
PBI-CMS HFM Performance: Temperature Influence

- **PBI-CMS HFM**s exhibit similar Arrhenius behavior with temperature.
- Higher $E_{p,\text{oxygen}}$ (~9.2 kJ/mol) in comparison to CA (~3.4) and PI (~5.6).
Ideal Permeation Performance Summary

- Large span in the measured O$_2$/N$_2$ separation performance of PBI-CMS membranes as a function of pyrolysis conditions and operating temperature.
- O$_2$/N$_2$ selectivity and O$_2$ permeance ranged from 7 to 18 & 0.2 to 5 GPU, respectively.
- Provides opportunities for energy efficient membrane process design.

Operating T: 5 to 25°C
Improving Separation Performance

Material chemistry and processing optimization

- Targeted towards retention of asymmetric morphology of base PBI membrane during pyrolysis to obtain asymmetric PBI-CMS hollow fiber membranes

Base PBI Polymer Membrane

1st Gen: Thick Symmetric PBI-CMS Membrane

2nd Gen: Asymmetric PBI-CMS Membrane
Membrane Modeling and Process Design
Developed hollow fiber membrane model and integrated with Aspen Plus process simulation software for air separation process development.
Preliminary Process Design

Simulated 2-stage membrane process for high purity O₂ production from air

- Estimated specific energy consumption ranged from 40 to 60 KJ/mol O₂ for 90 to 95% purity O₂ achievable with demonstrated PBI-CMS HFMs having O₂/N₂ selectivity of 10 to 18
The outcome of this work will be a next generation membrane platform with processability and scalability characteristics amenable to industrial deployment at a modular scale while enabling low-cost and energy efficient high purity O$_2$ production for advanced gasification power systems.
The submitted materials have been authored by an employee or employees of Triad National Security, LLC (Triad) under contract with the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA). Accordingly, the U.S. Government retains an irrevocable, nonexclusive, royalty-free license to publish, translate, reproduce, use, or dispose of the published form of the work and to authorize others to do the same for U.S. Government purposes. This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither Triad National Security, LLC, the U.S. Government nor any agency thereof, nor any of their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Triad National Security, LLC, the U.S. Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of Triad National Security, LLC, the U.S. Government, or any agency thereof.