

Modular Gasification for

Syngas/Engine Combine Heat and Power Applications in Challenging Environments

(Funding by DOE/NETL Contract DE-FE0031446)

MAKING COAL RELEVANT FOR SMALL SCALE APPLICATIONS

UAF is an AA/EO employer and educational institution and prohibits illegal discrimination against any individual: www.alaska.edu/nondiscrimination/.

WHERE IS FAIRBANKS?

PROJECT PARTNERS

SLR & PDC: Permitting and Environmental Assessments

HMI: Intellectual Property Decades Experience

WorleyParsons:
Detailed Engineering
Cost Estimating Service

Cost Share: Chena Power, Aurora Energy, UAF, Sotacarbo, HMI, GVEA, Innio, Western Energy Services

PROJECT DESCRIPTION AND OBJECTIVE

Demonstrate small scale coal gasification to fuel reciprocating engine generators

- Cost effective coal generating capacity for small applications
- Provides load following services
- Ideal for islanding systems
- Local jobs

ALIGNMENT WITH DOE GOALS

- ✓ Small—50-350 MW
 - ✓ This project: 18 MWe
 - ✓ First step toward "modularizing"
- ✓ Near Zero Emissions
 - ✓ Built in a "Serious non-Attainment area for PM2.5"
- ✓ Minimize water usage
 - ✓ Water cleaned up for greenhouse use

- ✓ Capable of natural gas cofiring
 - Engines are easily convertible to firing natural gas or propane
- ✓ Capable of high ramp rates
 - ✓ Designed for wind regulation
- Not specifically part of DOE's stated goals, but noteworthy:
- ✓ Pyrolysis tars/oils can be used in diesel engines
- ✓ Deigned to co-fire biomass

UAF'S MODIFIED DESIGN

UAF'S MODIFIED DESIGN

THE EQUIPMENT

FOUND A HOME!

WHY COAL GASIFICATION?

COSTS FOR REGULATING 10 MWe OF WIND POWER

	Syngas Project (UAF)	Diesel (GVEA)	Natural Gas (not an option)
Capital Cost (option 3)	\$85 million		
Fuel Costs + other O&M	\$76.6/MWh (\$10/mmbtu)	\$147.2/MWh (\$15/mmbtu)	\$200/MWh (\$20/mmbtu)
Wind Regulation Costs (10 MWe regulating capacity)	\$3.1 M/yr (GVEA's cost to regulate wind with syngas)	\$6.5 M/yr (avoidable costs)	
Total Generation (syngas and liquid fuels)	18 MW 10.0 MW avg 5 to 18 MW swing	240 MW 43.2 MW avg 35 to 48 MW swing	
Efficiency, HHV	39%	<15% (turbines)	

THE PROBLEM: INTERMITTENT GENERATION

Eva Creek

"Free" Energy

Combustion Turbine

Expensive Energy

Coal

Cheapest Energy

THE SOLUTION: COAL ENABLING WIND

"Free" Energy

Cheapest Energy

Coal

Cheapest Energy

Combus tion Turbine

Expensive Energy

EFFICIENCY vs. LOAD

EFFICIENCY vs. LOAD

REGULATORY/PERMITTING

The EPA designated the Fairbanks vicinity as a "serious nonattainment area for PM2.5"

- PM2.5 and precursors (NOx, SO2, volatile organic compounds, and ammonia) will be regulated under the nonattainment New Source Performance Standard
- Even with Best Available Control Technology, this project is economical

MODULARITY and **SCALING**

Gasifier/Engine
System is Modular and
Scalable

Multiple gasifier trains and engines can create powerplants from 1

MWe to 30 MWe+

AK-DGGS IDENTIFIED 37 VILLAGES WITH COAL NEARBY

RADICALLY ENGINEERED SYSTEM

- Make it work at 10 to 18 MWe
 - Economies of Scale working against us
- Make it work at village scale <2MWe
- Integrate with diesel infrastructure
- Make it work with biomass and waste products

USEFUL IN LOWER-48, TOO!

- Coal plants are best suited for baseload operation because it requires a long period to ramp up and to ramp down
- Syngas/Engine combinations has the potential for making coal a cost competitive resource meeting flexible energy demand and fluctuating generation

BUT MOST IMPORTANTLY ...POWER ALASKA'S INTERIOR

RISK FACTORS

- Except for the HMI Gasifier, all components are available commercially
 - HMI gasifier components are well understood and documented
- Emission controls could be the key factor to be addressed
 - Fairbanks is in an EPA designated "Serious non-attainment area for PM 2.5"

MEET THE TEAM

- Diane Revay Madden, NETL
- Brent J Sheets, UAF
- Rolf Maurer & Team, HMI
- Harvey Goldstein & Team, WorleyParsons
- Chilkoot Ward & David Fish, Aurora Energy
- Randy Hobbs, Hobbs Industries
- Alberto Pettinau, Sotacarbo
- Isaac Bertschi & Courtney Kimba SLR
- Erica Betts, PDC

QUESTIONS?

Brent J Sheets 907-750-0650

bjsheets2@alaska.edu

http://pdl.uaf.edu/