

Pressure Driven Oxygen Separation

David Reed, Kerry Meinhardt, Jon Helgeland, Greg Coffey, and Pepa Matyas

Pacific Northwest National Laboratory Richland, WA

2020 Gasification Project Review Meeting

September 2, 2020

PNNL is operated by Battelle for the U.S. Department of Energy

Pressure Driven Oxygen Separation

Outline

- Project Description and Objectives
- Project Background
- Critical Factors for Project Success
- Project Update
- Next Steps

2

Project Description and Objectives

The overall goal of the proposed effort is to develop a small scale, modular air separation unit providing 10-40 tons/day of high purity oxygen to a 1-5 MW gasifier at low cost and high efficiency

- Mixed conducting two phase material capable of separating oxygen at 700-800°C.
- Planar membrane/support structure
- Utilize the difference in oxygen partial pressure across the membrane to drive oxygen from air, no electrical energy needed for oxygen separation

 pO_2^{II}

Oxygen Separation Techniques

- Cryogenic Air Separation mature
 - Low energy demand at high capacity (4000 T/day)
 - Energy demand very high at low capacity (i.e 10-40 T/day)
 - Very high purity (99+)
- Pressure Swing Adsorption (PSA) mature
 - Economical at lower capacities (i.e. 300-400 T/day)
 - Purity ~ 90 93%
- **Polymer Membranes** mature
 - Low purity ($\sim 40\%$)
- **Ceramic Membranes** R&D
 - High purity (99+)
 - Thermal integration
 - Can be economical depending on oxygen permeability
 - Examples: OTM (Oxygen Transport Membrane)

ITM (Ion Transport Membrane) PRODUCTS

Background

<u>Planar</u> vs Tubular Design

- Ease of manufacturing
- High surface area
- Increased sealing surface area
- Lower/medium temperature (700-800°C)
- Two phase composite membrane (σ_i and σ_e)
- SOFC design experience at PNNL

Upgrade

Syngas

Catalyzed OTM

Atmospher

Background

Planar Design

Tubular Design

Bilayer Structure

Thin composite membrane (~ 10 µm)

Porous support (~ 0.5-1mm)

Composite membrane

- Dense
- High σ_i and σ_e
- Compatible with glass seal
- Inexpensive fabrication
- No electrodes

Porous Support

- ~ 50% dense
- TEC match to membrane
- Mechanical integrity
- Co-fired w/ membrane

Design will leverage SOFC stacks developed at PNNL

Composite Membrane

- Two phase composite ($\sigma_i \& \sigma_e$)
- Similar TEC
- Limited interaction during firing
- High σ_i phase
- Sufficient σ_e phase
- Compatible with glass seal

Material Selection

Ionic Conductor

• Doped CeO₂

Electronic Conductor

- Doped LaMnO₃
- Doped LaFeO₃

Background

Fluorite structure

Perovskite

Composite Membrane O₂ Permeability/Flux Calculations

	Case 1	Case 2	
Ionic conductivity:	0.0233	0.05	S/cm
P(O2)1:	0.2	0.2	atm
P(O2)2:	1.00E-04	1.00E-04	atm
Temp (°C):	700	> 800	
Temp (K):	973	1073	
Thickness (um):	10	10	
Thickness (cm):	0.001	0.001	
Flux (A/cm2):	3.71	8.78	
Flux (moles O2/cm2-s):	9.62E-06	2.28E-05	
Flux (grams O2/cm2-s):	3.08E-04	7.28E-04	
Flux (grams O2/cm2-h):	1.11	2.62	
Flux (grams O2/cm2-day):	26.59	62.93	
Flux (lbs O2/cm2-day):	5.86E-02	1.39E-01	
Pounds of oxygen required/day:	20000	20000	
Total cell area required (cm2):	341155.97	144162.40	
Cell area(cm2):	420	420	
# of cells required:	812.28	343.24	
Cells/stack:	100	100	
# of stacks required:	8.12	3.43	>

Input Parameters

- σ_i
- pO_2^{I} and pO_2^{II}
- Temperature
- Membrane thickness
- lbs. of oxygen/day
- Cell area
- Cells/stack

Output Value \rightarrow # of stacks required

of stacks appears to be very reasonable for a 10 ton/day modular ASU

Background

Factors Critical for Project Success

- Low cost materials to enable market penetration and maximize energy efficiency
- **Minimize interactions** between ionic and electronic conducting phases
- Co-sinter thin composite membrane on low cost porous supports with minimal warping and cracking
- Design a planar stack architecture with low cost fabrication processes

Minimal Interaction within Membrane

Ionic

Conductor

Electronic

Conductor

70/30 vol% Ionic/Electronic phase

Doped CeO₂ $\operatorname{Sm}_{\operatorname{Ce}}' \to 2[\operatorname{V}_{O}^{\circ\circ}]$

- TC grade $(5-8 \text{ m}^2/\text{g})$, $T_{s} \sim 1400^{\circ}C$
- HP grade (10-14 m^2/g), T_s~1300°C

Doped LaMnO₃ Acceptor doped p-type

Examples

La_{0.9}MnO_{3-x} (LM90) La_{0.75}Sr_{0.2}MnO_{3-x} (LSM-20)

TC grade $(4-8 \text{ m}^2/\text{g})$

HP grade $(10-14 \text{ m}^2/\text{g})$

Results

Fluorite structure

- Limited interaction, no 2nd phase formation
- Potential interdiffusion, Mn & Sr into \bullet fluorite structure

Results

Composite Dilatometry

	α (x 10 ⁻⁶)
)/50	11 11
J/30	11.11
0/40	11.57
)/30	12.02
50/50	11.83
60/40	11.89
70/30	12.09
60/40	11.93
70/30	11.91

Typical values of α are ~ 12 x 10⁻⁶/°C

Electrical Conductivity

- Electrical conductivity (σ_e) controlled by perovskite phase
- $\sigma_{e} \sim 3$ orders of magnitude greater than ionic conductivity (σ_i)
- Percolation in perovskite phase

- $\sigma_i \sim 0.07$ at 800°C and 0.03 at 700°C
- ~ $2/3 \sigma_i$ value used in composite calculations
- Percolation in both phases

Results

00	550	500	
	0	\$	

Permeability Measurements

Self-supporting composite membranes (~ 600 µm)

- σ_i calculated from oxygen permeability measurements
- Similar to predicted value

Results

- To have a realistic number of stacks for producing 10 T/day of $O_2 \rightarrow$ the membrane thickness needs to be on the order of 10-15 μ m.
- Membrane will need to be supported \rightarrow Bilayer Structure

Results

Co-sintered bilayers

- Dense and thin membrane to maximize the oxygen permeability
- Thick and porous support to provide mechanical integrity and maximize gas diffusion
- Limited interaction during co-sintering

Co-sintered bilayers

Insulating LaAlO₃ formation at membrane/support interface – extremely low oxygen flux

Results

	LaMnO3		
	I	aAlO3	
		SDC	
		YAIO3	
	Mg	A1204	
		Y2O3	
		A1203	
1		MgO	
	65	7	

compositional change -

future direction

Bilayers with Controlled Microstructures

Membrane Thickness

Tailor the membrane thickness by controlling the casting thickness

Vol % Porosity

Tailor porosity by controlling the amount of fugitive phase used in tape cast suspension

Size of Porosity

1 μm fugitive phase

Tailor size & distribution of porosity by controlling size of the fugitive phase

Bilayers with Maximum Oxygen Permeability

- Limited interaction during sintering of membrane and support (no 2nd phase formation)
- Thin, dense, crack-free membrane
- Porous support with controlled microstructure
- Expansion of the reaction area into three dimension \rightarrow improve the reaction kinetics by increasing the effective area of the three-phase boundary (TPB) at both reaction sites
- Increase the reaction kinetics by utilizing a known catalysts at the three phase boundaries

Barrier Layer for Maximum Oxygen Permeability

• Barrier layer provides 3-D surface to improve reaction kinetics

Results

Stack Design

Stack Design

Low Cost Materials and Processes

<u>Materials</u>

- > Membrane (least amount of material used ~ 10-15 μ m thick)
 - Ionic conductor $Ce_{1-x}Gd_xO_{2-x}$
 - Electronic conductor $La_{0.75}Sr_{0.2}O_{3-x}$
- ➢ Support − MgO
- ➢ Glass seal (BaO-Al₂O₃-SiO₂)
- ➢ Frames, gas isolation plates and corrugated supports
 - 400 series stainless steel

Fabrication processes

•

- Membrane and support used traditional thick film processing
 - Tape casting
 - Screen printing

Stainless steel frames, gas isolation plates and corrugated supports will be stamped

Accomplishments

- Reduced sintering temperature during co-firing to reduce interactions (~1300°C)
- Limited interactions at the membrane/support interface
- Good membrane conductivity significant oxygen flux can be achieved in composites for designing an economic modular oxygen separation unit
- Thermal expansion match between all components (composite membrane, composite support, glass-ceramic seal, 400 series stainless steel frame)
- Inexpensive materials of construction
- Good mechanical strength in porous support
- Ability to fabricate very thin dense membrane (10-15 µm) on flat, crack free porous supports
- Ability to control tape cast composite microstructures such as density, % porosity, size of porosity, shrinkage, etc.
- Ability to scale technology using traditional inexpensive thick film techniques

Project Milestones

- ٠

Membrane	•
Barrier.	
 Support	
<mark>Catalyst</mark> Barrier Membrane	

	Fiscal Year	ID	Description	Planned/ Expected Completion Date	Actual Completion Date	Verification Method
	2	M1	Reduce interfacial reactions at membrane-support interface	5/31/2020	3/31/2020	Reduce interfacial interactions via sintering temperature and/or alternative materials to improve the oxygen permeability in the bilayer structure
$\left(\right)$	2	M2	Optimize oxygen flux for 1-2" diameter bilayer structures using barrier layers and catalysts	11/30/2020		Oxygen flux values will be compared to theoretical values calculated at various temperatures on bilayer structures
	2	М3	Demonstrate scale up of bilayer structure (10 cm x 10 cm)	2/28/2021		Bilayer structure will be flat and crack free with a dense membrane co- sintered on a porous support using bilayer structures in M2
	2	M4	Propose stack Design capable of producing 10 tons/day of oxygen	2/28/2021		Design will use oxygen flux values found on bilayer structures in M2 utilizing low cost frames and glass seals.

Maximize Oxygen Permeability • Tailor microstructure Barrier layer to increase reaction area • Catalysts to improve reaction rates Support

Acknowledgements

The authors wish to thank Venkat Venkataraman, David Lyons, and Jai-Woh Kim from DOE Office of Fossil Energy for their support of this project.