
Pressure Driven 
Oxygen Separation
David Reed, Kerry Meinhardt, Jon Helgeland,
Greg Coffey, and Pepa Matyas

Pacific Northwest National Laboratory
Richland, WA

2020 Gasification Project Review Meeting

September 2, 2020



2

Pressure Driven Oxygen Separation

• Project Description and Objectives 

• Project Background

• Critical Factors for Project Success

• Project Update

• Next Steps

Outline



3

Project Description and Objectives

The overall goal of the proposed effort is to develop a small scale, 
modular air separation unit providing 10-40 tons/day of high purity 
oxygen to a 1-5 MW gasifier at low cost and high efficiency

• Mixed conducting two phase material capable of 
separating oxygen at 700-800◦C.

• Planar membrane/support structure

• Utilize the difference in oxygen partial pressure 
across the membrane to drive oxygen from air, no 
electrical energy needed for oxygen separation
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Oxygen Separation Techniques
Background

 Cryogenic Air Separation – mature 
• Low energy demand at high capacity (4000 T/day)
• Energy demand very high at low capacity (i.e 10-40 

T/day)
• Very high purity (99+)

 Pressure Swing Adsorption (PSA) – mature
• Economical at lower capacities (i.e. 300-400 T/day)
• Purity ~ 90 - 93%

 Polymer Membranes – mature
• Low purity (~ 40%)

 Ceramic Membranes – R&D 
• High purity (99+) 
• Thermal integration
• Can be economical depending on oxygen permeability
• Examples: OTM (Oxygen Transport Membrane) 

ITM (Ion Transport Membrane)
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Proposed Ceramic Membrane Technologies 

Planar Design 

Tubular Design 

Planar vs Tubular Design

• Ease of manufacturing
• High surface area
• Increased sealing surface area
• Lower/medium temperature (700-800◦C)
• Two phase composite membrane (σi and σe)
• SOFC design experience at PNNL

Background
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Proposed Ceramic Membrane Technologies 
Background

Thin composite membrane
(~ 10 μm)                  

Porous support (~ 0.5-1mm)

Bilayer Structure

Composite membrane 
• Dense
• High σi and σe
• Compatible with glass seal
• Inexpensive fabrication
• No electrodes

Porous Support
• ~ 50% dense
• TEC match to membrane
• Mechanical integrity
• Co-fired w/ membrane

Design will leverage SOFC stacks developed at PNNL 
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Background

Proposed Ceramic Membrane Technologies 

Thin composite membrane (~ 10 
μm)                  

• Two phase composite (σi & σe) 
• Similar TEC
• Limited interaction during firing
• High σi phase
• Sufficient σe phase
• Compatible with glass seal

Material Selection
Ionic Conductor

• Doped CeO2

Electronic Conductor
• Doped LaMnO3
• Doped LaFeO3

Composite Membrane
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Background

Proposed Ceramic Membrane Technologies 

Composite Membrane O2 Permeability/Flux Calculations

Input Parameters
• σi
• pO2

I and pO2
II

• Temperature
• Membrane thickness
• lbs. of oxygen/day
• Cell area
• Cells/stack

Output Value
 # of stacks required

Ionic conductivity: 0.0233

P(O2)1: 0.2
P(O2)2: 1.00E-04

Temp (°C): 700
Temp (K): 973

Thickness (um): 10
Thickness (cm): 0.001

Flux (A/cm2): 3.71
Flux (moles O2/cm2-s): 9.62E-06
Flux (grams O2/cm2-s): 3.08E-04
Flux (grams O2/cm2-h): 1.11

Flux (grams O2/cm2-day): 26.59
Flux (lbs O2/cm2-day): 5.86E-02

Pounds of oxygen required/day: 20000
Total cell area required (cm2): 341155.97

Cell area(cm2): 420
# of cells required: 812.28

Cells/stack: 100
# of stacks required: 8.12

0.05 S/cm

0.2 atm
1.00E-04 atm

800
1073

10
0.001

8.78
2.28E-05
7.28E-04

2.62
62.93

1.39E-01

20000
144162.40

420
343.24

100
3.43

Case 1 Case 2

# of stacks appears to be very 
reasonable for a 10 ton/day 
modular ASU
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Proposed Ceramic Membrane Technologies 

Factors Critical for Project Success

• Low cost materials to enable market penetration and maximize energy 
efficiency

• Minimize interactions between ionic and electronic conducting phases
• Co-sinter thin composite membrane on low cost porous supports

with minimal warping and cracking
• Design a planar stack architecture with low cost fabrication processes
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Minimal Interaction within Membrane

Fluorite structure

Perovskite

70/30 vol%
Ionic/Electronic phase

SEM micrograph

Ionic 
Conductor

Electronic 
Conductor

Doped CeO2
SmCe′ → 2[VO

°°]

Examples
Ce0.8Sm0.2O2-x w/1% Co  (SDCC)
Ce0.8Gd0.2O2-x  (GDC)
Ce0.8Sm0.2O2-x  (SDC)

• TC grade (5-8 m2/g), 
Ts~1400°C

• HP grade (10-14 m2/g), 
Ts~1300°C

Results

Doped LaMnO3
Acceptor doped p-type

Examples
La0.9MnO3-x (LM90)
La0.75Sr0.2MnO3-x (LSM-20)

• TC grade (4-8 m2/g)
• HP grade (10-14 m2/g)
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Results

Composite Membrane Characterization

Interaction Studies

• Limited interaction, no 2nd phase 
formation

• Potential interdiffusion, Mn & Sr into 
fluorite structure

Composite Dilatometry

• Typical values of α are ~ 12 x 10-6/°C
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Results

Composite Membrane Characterization

Electrical Conductivity

• Electrical conductivity (σe) controlled by 
perovskite phase 

• σe ~ 3 orders of magnitude greater than 
ionic conductivity (σi)

• Percolation in perovskite phase

• σi ~ 0.07 at 800°C and 0.03 at 700°C
• ~ 2/3 σi value used in composite 

calculations
• Percolation in both phases

Ionic Conductivity
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Results

Composite Membrane Characterization

Permeability Measurements Self-supporting composite membranes 
(~ 600 µm)

• σi calculated from oxygen permeability 
measurements

• Similar to predicted value
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Results

Composite Membrane Characterization

• To have a realistic number of stacks for producing 10 T/day of O2  the 
membrane thickness needs to be on the order of 10-15 µm.

• Membrane will need to be supported  Bilayer Structure
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Co-sintered bilayers

• Dense and thin membrane to maximize the oxygen 
permeability

• Thick and porous support to provide mechanical 
integrity and maximize gas diffusion

• Limited interaction during co-sintering

Results
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Co-sintered bilayers
Results
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Bilayers with Controlled Microstructures
Results

Membrane Thickness

Tailor the membrane thickness by 
controlling the casting thickness

Vol % Porosity

Tailor porosity by controlling 
the amount of fugitive phase 
used in tape cast suspension

Size of Porosity

12 µm fugitive phase

1 µm fugitive phase

Tailor size & distribution of 
porosity by controlling size of 
the fugitive phase
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Bilayers with Maximum Oxygen Permeability
Results

• Limited interaction during sintering of membrane and 
support (no 2nd phase formation)

• Thin, dense, crack-free membrane
• Porous support with controlled microstructure

• Expansion of the reaction area into three 
dimension  improve the reaction kinetics by 
increasing the effective area of the three-phase 
boundary (TPB) at both reaction sites

• Increase the reaction kinetics by utilizing a known 
catalysts at the three phase boundaries



19

Barrier Layer for Maximum Oxygen Permeability
Results

• Barrier layer provides 3-D surface to improve reaction kinetics
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Stack Design
Results
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Stack Design
Results



22

Low Cost Materials and Processes
Results
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Accomplishments

• Reduced sintering temperature during co-firing to reduce interactions (~1300°C)
• Limited interactions at the membrane/support interface
• Good membrane conductivity – significant oxygen flux can be achieved in composites for

designing an economic modular oxygen separation unit
• Thermal expansion match between all components (composite membrane, composite

support, glass-ceramic seal, 400 series stainless steel frame)
• Inexpensive materials of construction
• Good mechanical strength in porous support
• Ability to fabricate very thin dense membrane (10-15 µm) on flat, crack free porous supports
• Ability to control tape cast composite microstructures such as density, % porosity, size of

porosity, shrinkage, etc.
• Ability to scale technology using traditional inexpensive thick film techniques
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Project Milestones

Fiscal 
Year ID Description

Planned/ 
Expected  

Completion 
Date

Actual 
Completion 

Date
Verification Method

2 M1 Reduce interfacial reactions at 
membrane-support interface 5/31/2020 3/31/2020

Reduce interfacial interactions via 
sintering temperature and/or 

alternative materials to improve the 
oxygen permeability in the bilayer 

structure

2 M2
Optimize oxygen flux for 1-2" 

diameter bilayer structures using 
barrier layers and catalysts 

11/30/2020

Oxygen flux values will be compared 
to theoretical values calculated at 
various temperatures on bilayer 

structures

2 M3 Demonstrate scale up of bilayer 
structure (10 cm x 10 cm) 2/28/2021

Bilayer structure will be flat and crack 
free with a dense membrane co-

sintered on a porous support using 
bilayer structures in M2

2 M4 Propose stack Design capable of 
producing 10 tons/day of oxygen 2/28/2021

Design will use oxygen flux values 
found on bilayer structures in M2 

utilizing low cost frames and glass 
seals.
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