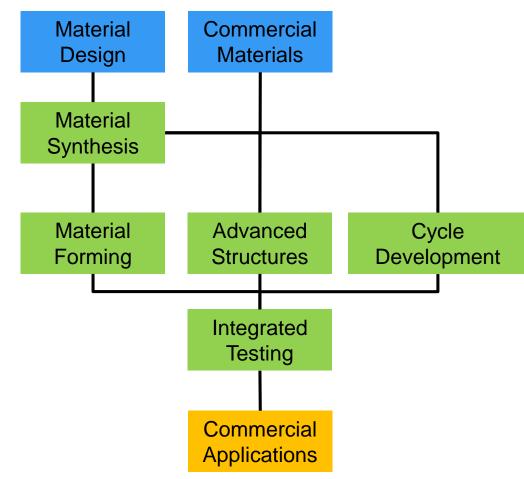


Pilot Testing of a Modular System for Oxygen Production

DOE Cooperative Agreement DE-FE-0031527 NETL Gasification Virtual Peer Review September 2, 2020



Objectives: The design, fabrication, and testing of a 10 to 20 kg/day modular oxygen (O_2) production system

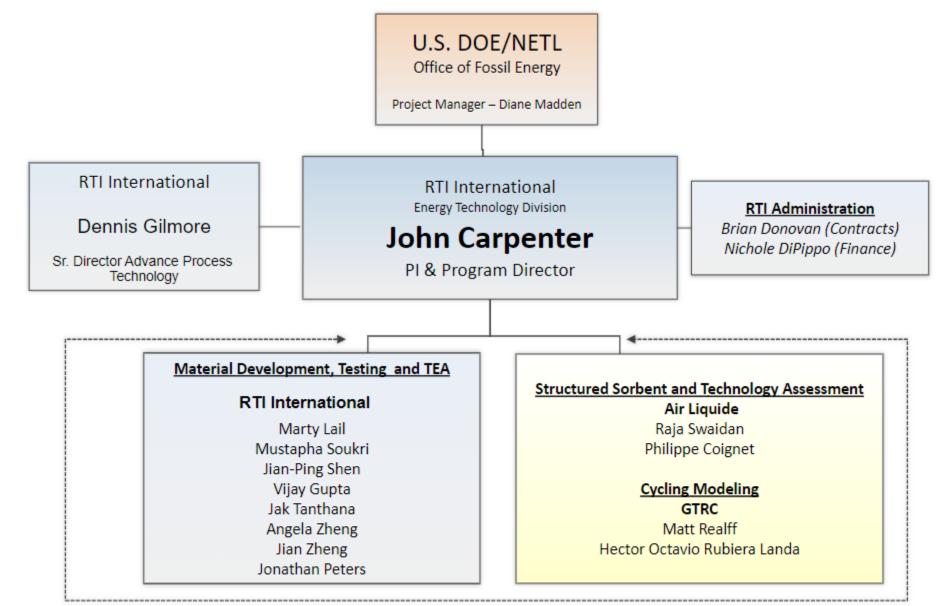
- Be cost competitive with current state-of-art process
- Modular process for small scale oxygen production
- Sorbent bed-factor less than 600 lb-sorbent/TPD O₂ (tons/day O₂)
- O₂ purity greater than 95%

Specific Challenges

- Rapid PSA cycle development
- Structured sorbent module development
- Rapid cycle modeling tool development and cycle optimization
- Material and module scale up and manufacturing
- Design and fabrication of pilot O2 production system
- Parametric and long-term testing
- Techno-economic analysis

Success Criteria

Determination of optimized O₂ sorbent formulation and engineered bed (module) structure for this sorbent to scale up to pilot production, as supported by Task 2 experimental results and Task 3.1 rapid-cycle process model projections

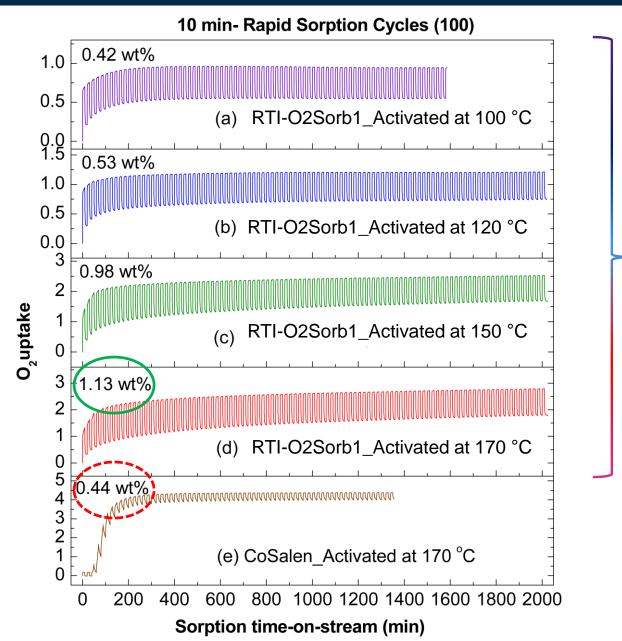

- 1. Structured sorbent mechanically robust and stable after >1,000 rapid sorption/desorption cycles
- 2. Either the O_2 binding sorbent or the conventional sorbent has sufficient working capacity for an O_2 production system with predicted BSF<600.

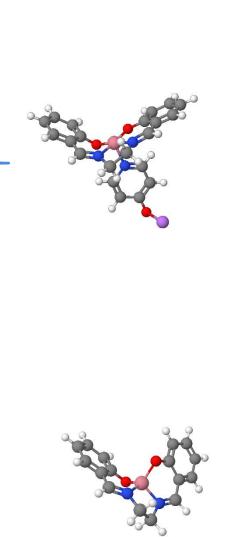
Process design package & final techno-economic analysis for full-scale, modular, rapid-cycle PSA O_2 production system using novel structured sorbent to produce 10-50 TPD of high-purity (\geq 95%) O_2 from air as the oxygen feed for DOE's 1- to 5-MW oxygen-blown REMS gasifier skid for power generation

 Target O₂ production cost below SOTA (target is < \$45/ton) Target Bed Size Factor [BSF] ~ 600 (smaller than benchmark BSF of 850 for commercial VPSA for O₂ production)

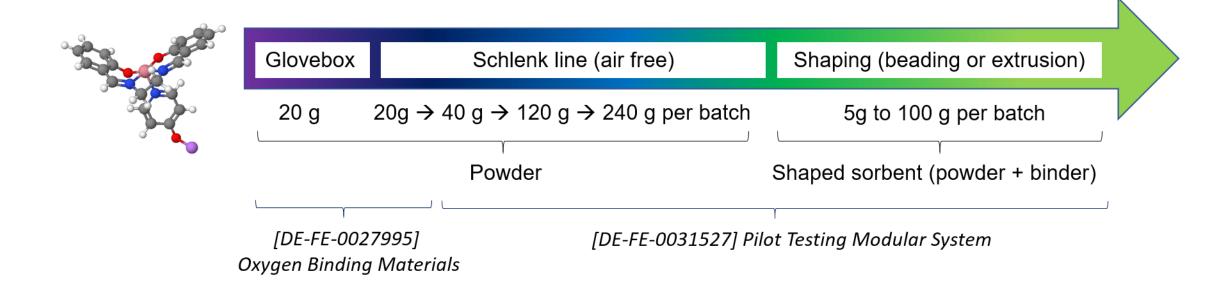
Development Roadmap

Previous Work DE-FE	E0027995	DE-FE0031527		Future Developm	ent / Sustainment
2016 2017	′ — 2019	2018 – 2020		2021 – 2023	2023+
Proof of Concept / Feasibility					Commercial Roll-Out
<image/> <image/> <image/> <image/> <image/>			ELIQUIDE Creative Orygen of materials into in factor r membrane instruction of a $g/d O_2$) as model sign package for ation system (5- commercial		
Technology Readiness Level	4	5	6	7	8 9

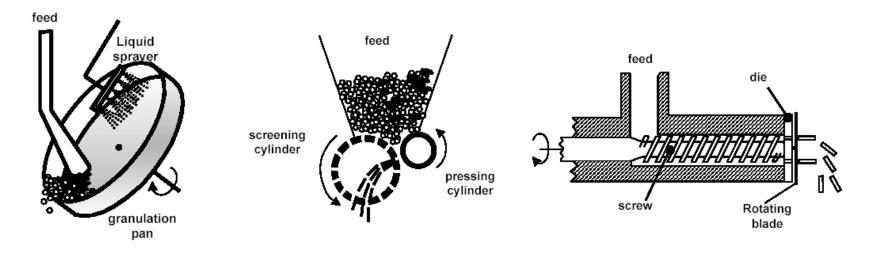

Development Team

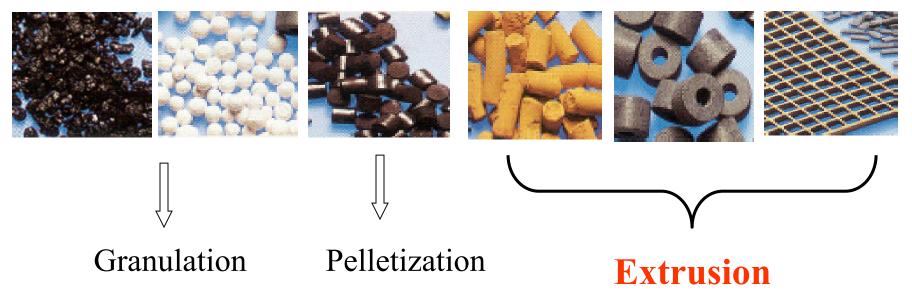

Materials Scale-up

Bio-Inspired O₂ Sorbent Material Development Summary


Material type	Structure/ Illustration	Material form	Material performance
Co-organometallic complex/silica		Solid	 Moderate O₂ sorption capacity (as high as 1.2 wt%) Slow O₂ sorption/ desorption kinetics Low O₂/ N₂ selectivity
Co Complex – Ionic Liquid	$P_{C1C2C3C4}^{+} L_{1}$	lonic liquid	 Moderate O₂ sorption capacity (as high as 1.1 wt%) Slow O₂ sorption/ desorption kinetics High O₂/ N₂ selectivity
Co Complex/ porous support	 Complex on Mesoporous silic zeolites O₂ binding metal organic frameworks 	a or Solid	 Low-moderate O₂ sorption capacity Slow O₂ sorption/desorption kinetics Low O₂/ N₂ selectivity
Co-PEI	N-CO-N NH2 H2 NH2 H2	Solid/ Solution	 High O₂ capacity, solid vs. liquid (3-6 wt% vs. 0.2 wt% in solution) Low O₂/ N₂ selectivity
Co Complex- O ₂ membrane	10 wt% Co Complex in Matrimid film	Solid membrane	 Low O₂/ N₂ selectivity
RTI-O2Sorb		Solid	 ✓ High O₂ sorption capacity (as high as 3.0 wt%) ✓ Fast O₂ sorption kinetics (rapid cycle <10 min) ✓ High O₂/ N₂ selectivity

TGA Cyclic O₂ Sorption of RTI's RTI-O2Sorb1 vs. Commercial Co-Salen




Progress on Scale-up of RTI-O2Sorb

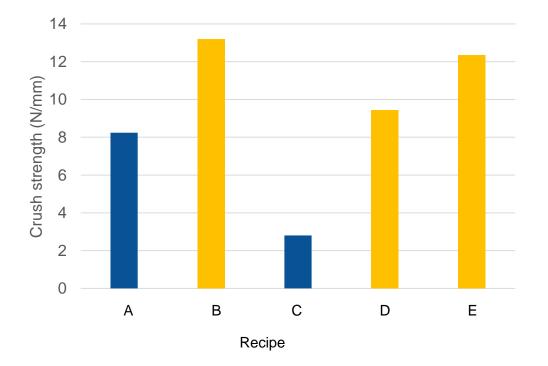
- ✓ Successfully repeated batch synthesis for maximum O_2 sorption performance (reversible O_2 uptake of 1~1.5 wt% with powder sample after activation at 170 °C)
- Successfully synthesized powder material with same performance using Schlenk line (which allows large batch synthesis)
- ✓ Successfully scaled up powder material synthesis with same sorption performance $(20g \rightarrow 40 g \rightarrow 120 g \rightarrow 240 g per batch)$

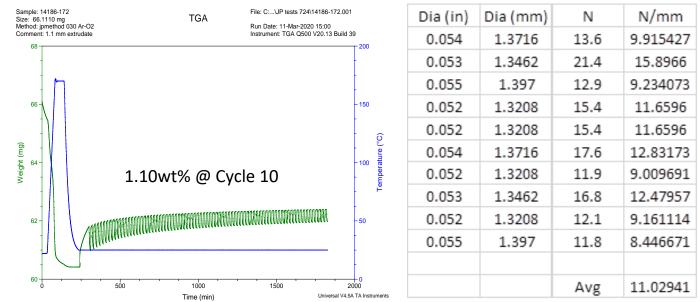
Agglomeration of Powder into Structured Form

Optimization of Extrudate Formulation

After exposed in 100% O₂ @ 100°C 0.5hr, and continued for 100 N₂-O₂ cycles

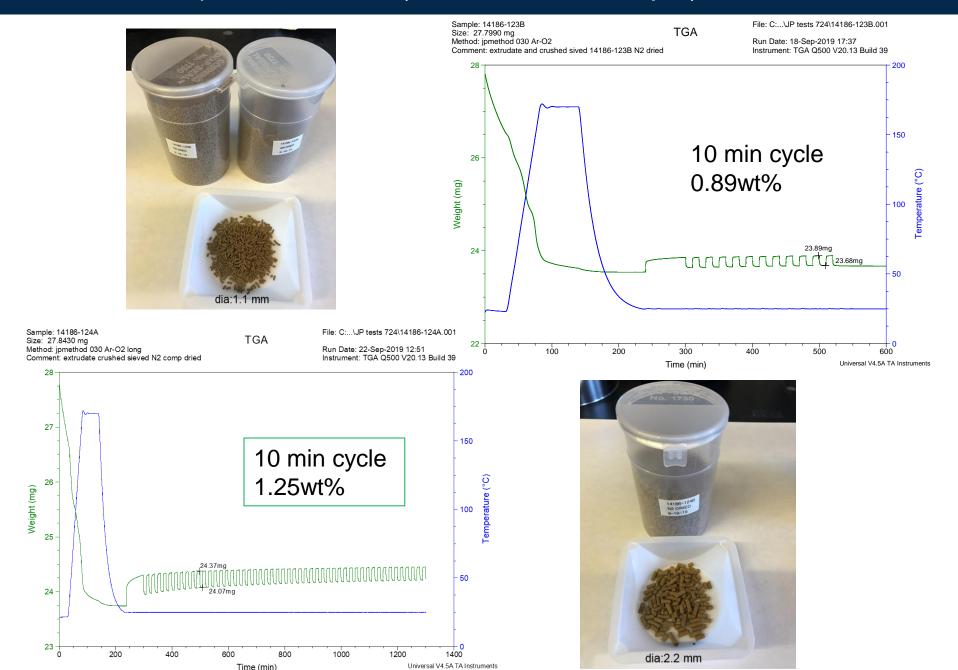
After normal N_2 - O_2 100 cycles

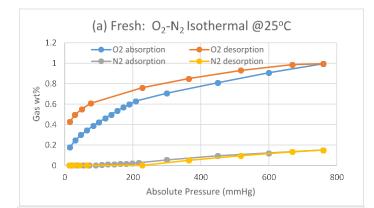

Extrudate Formation Characteristics

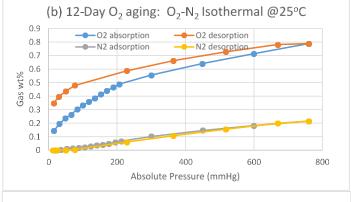

Key characteristics of Forming Extrudate:

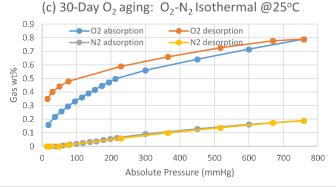
• O₂ capacity, mechanical strength, size

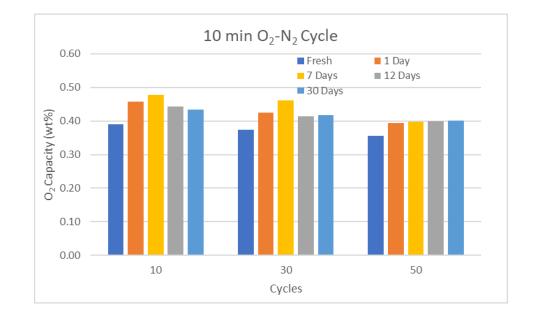
Key variables of Forming Extrudate:

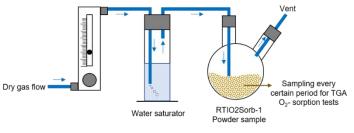

- binder ratios and solvent
- extrusion pressure and temperature, drying temperature




				Crush	Dynamic
Binder			Length	strength	oxygen capacity
(wt%)	Density (g/cc)	Dia. (mm)	(mm)	(N/mm)	(wt%)
16.7	0.55-0.62	1.2-1.5	2.0-10.0	8.0-12.0	0.8-1.2


TGA Profile of Extrusion Shaped RTI-O2Sorb (crushed to 300~425 µm)


Exposure/Aging Testing



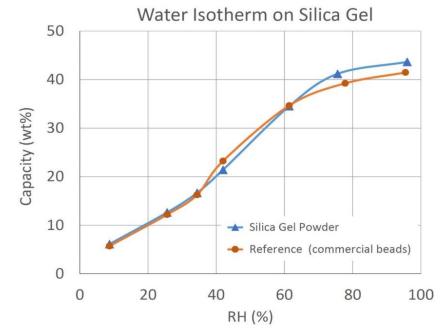
- 2.62 vol% $H_2O(g)$, balance N_2
 - 45d exposed, similar to long term cycling
- 1.5% O_2 ,19.5 CO_2 , balance N_2
 - Exposed 36d no degradation
- 2.62 vol% $H_2O(g)$, 20.40% O_2 , balance N_2
 - Similar to long term cycling in TGA
- 99% vol% O2, , balance N_2
 - Some degradation through day 12,
 - day 30 similar to day 12 (See graphic to left)

Forming of Structured Sorbents

Air Liquide Objectives:

- Develop novel structured adsorbents production techniques using conventional sorbent materials
- Apply and adapt the techniques developed on conventional adsorbents to the novel oxygen-binding adsorbent materials
- Manufacture and ship 2 to 4 structured adsorbers for pilot testing based on novel oxygen-binding adsorbent
- Support activities (e.g. Pilot design, Techno-Economic Analysis)

Highlights of BP1


- Air Liquide BP1 objectives successfully met on time (by June 30th, 2019)
- Formulations were developed and characterized for (1) air dehumidification and (2) for conventional nitrogen (N₂)-binding adsorbent
- Activation protocols for each adsorbent formulation were developed
- Forming techniques to produce structured beds were developed

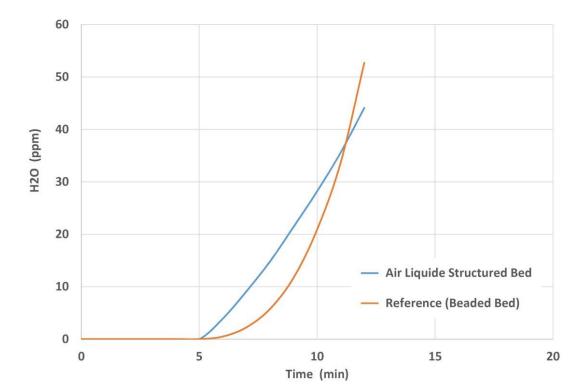
Highlights of BP2 so far

- Forming techniques and activation tool were scaled up for beds of up to 1 kilogram
- Reviewed and provided feedback on the pilot design
- Ongoing work on adapting formulation and forming techniques to novel oxygen-binding adsorbent. Multiple samples were received from RTI, characterized and used to support adaptation-work on formulation and forming

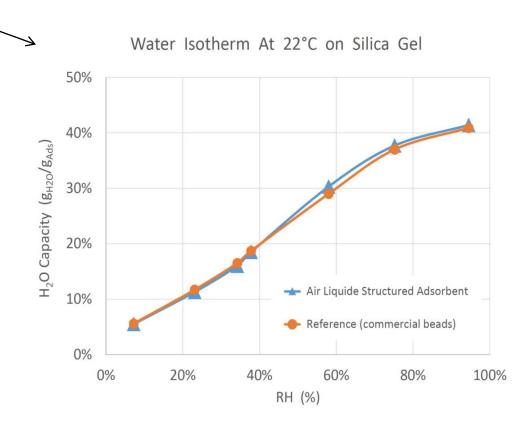
Sorbent and Structured Sorbent Module Development and Characterization

BP1 – Overall Approach 02 Conventional O_2 VSA \rightarrow uses 2 adsorbents Equalization Booster Tower Top adsorbent used to capture N_2 Adsorbent Towers Bottom adsorbent used for air drying **Air Liquide** Structured beds made of elementary shapes ٠ Elementary shapes produced by combining adsorbent Air powder and binder Air Exhaust Gas

17


BP1 – Air Drying / Multi-Steps Approach

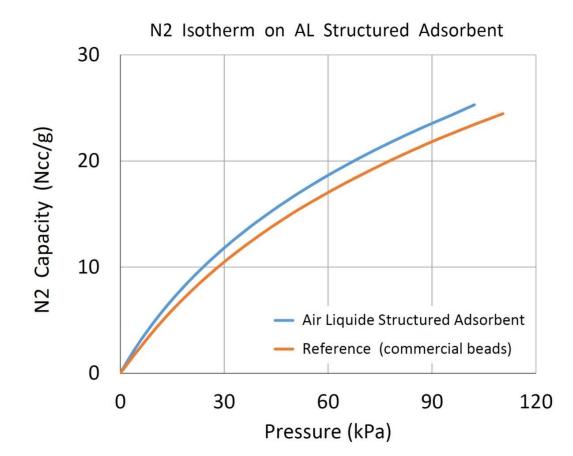
- <u>2 options</u>: activated alumina (AA) or silica gel (SG)
- SG powder selected based on its highest water capacity
- SG powder formed with a binder into elementary shapes


Sorbent and Structured Sorbent Module Development and Characterization

BP1 – Air Drying / Multi-Steps Approach

- H₂O capacity of SG elementary shapes meets expectations
- Small scale structured SG-bed formed and characterized
 - H₂O breakthough curve comparable to conventional beaded bed
 - Pressure drop comparable to conventional beaded bed

H2O Breakthrough on AL Structured Adsorbent



Air Liquide

BP1 – N2 Adsorbent / Multi-Steps Approach

- Various zeolites typically used as N₂ binding adsorbents
- Selection of zeolite powder
- Forming with binder
- High temperature activation
- Similar N₂ capacity & selectivity compared to commercial adsorbents
- Faster kinetics

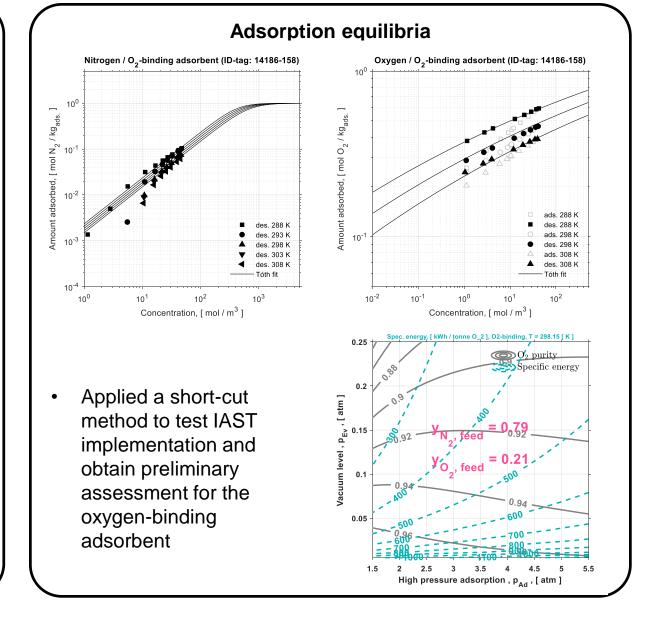
Sorbent and Structured Sorbent Module Development and Characterization

BP2 – Ongoing Adaptation Work on Novel O₂ Binding Adsorbent

- <u>Goal</u>: form structured bed with novel adsorbent by adapting techniques developed over BP1
- First powdery samples of novel adsorbent received from RTI early Q2 2020
- Current focus is on producing an advantageous elementary shape while managing specific limitations of novel adsorbent
- An advantageous elementary shape is fast to produce and can yield low pressure drop once formed into a structured bed
- Performance of the formed adsorbent is checked by running N2/O2 isotherms on elementary shapes
- Next Steps
 - Finalize definition of elementary shapes based on lab trials
 - Performance check of elementary shapes based on N2/O2 isotherms
 - If formed-adsorbent performance meets expectations, then structured beds will be formed and shipped for pilot testing

Novel powder of O2 binding adsorbent

Cycle Modeling


Development of a vacuum pressure-swing adsorption (VPSA) full-order solver

Process modeling

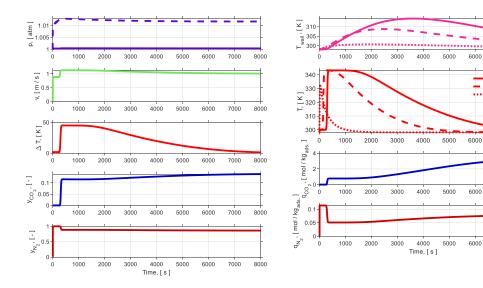
- 1D PDE system describing transient fixed-bed adsorber equations for 7 state variables: gas-phase compositions, adsorbed-phase concentrations, pressure, bed & casing temperatures
- Competitive adsorption equilibria modeled w/ IAST
- Linear driving-force (LDF) approximation for mass transfer
- First-principles heat transfer modeling considered
- Solved numerically w/ Finite Volume Method (FVM)
- Coded in MATLAB

Optimization

 Multi-objective optimization of relevant VPSA performance variables using genetic & surrogate-based algorithms

Process modeling results

Flue-gas separation results for model validation

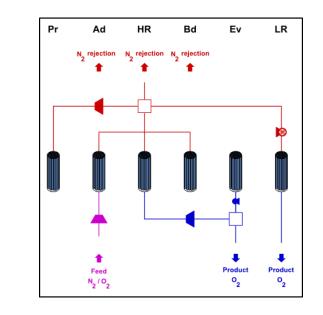

I P end

middle

7000

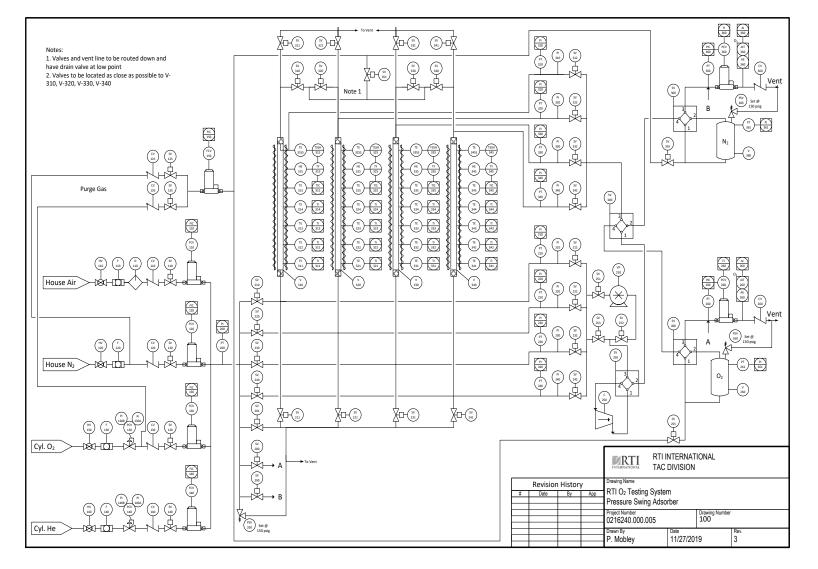
7000

• Dynamic column breakthrough (DCB)



• 4-step VPSA w/ LPP for heavy-product recovery

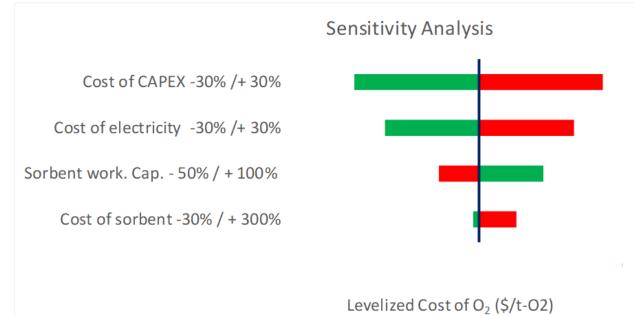
On-going sub-tasks


• Implementation of 6-step cycle to simulate the operation of the air separation skid under construction

- Efficiency improvements of IAST calculations to speed-up optimization runs
- Implementation & execution of multi-objective optimization runs for 4-step and 6-step cycles to identify suitable operating conditions

Integrated Test Skid

10 kg Pilot Modular System Process Flow Diagram



- O₂ production rate
- O_2 purity
- Cycle optimization
- Bed size factor
- Unit power consumption
- Material stability
- Techno-economic analysis for O₂ cost projection

Steps

- HMB completed
- Sizing completed
- Safety Review Internal completed
- AL feedback completed
- Order Key Instruments completed
- Fabrication\Controls Ongoing
- Commissioning
- Testing

- Data from the 10 kg/d test bed will provide key data for sorption/desorption kinetics at relevant conditions
 - O2-binding sorbent data will be used for cycle modeling and optimization by GTRC
 - N2-binding, if tested, will be modeled by Air Liquide
- Air Liquide will provide input module costs
- System design will be updated from DE-FE0027995 (10 TPD design) to incorporate
 - Refined sizing and utilities
 - Update utilities and equipment cost
 - Update modular construction costs
 - Determine overall O₂ production cost

<u>Results</u>

- Converted RTIO2Sorb synthesis from glove box to scalable protocol
- Developed structured sorbent modules with N2 sorbents
- Developed O2 sorbent VPSA cycle model
- Design of 10 kg/d testing system

<u>Next step</u>

- Integrated 10 kg/d system testing
- Incorporate RTIO2Sorb into structured sorbent modules
- Refining process modeling for large scale design and cost

<u>Future</u>

- Catalyst manufacturing development
- Large pilot-scale testing or 1 TPD prototype

Enable small-scale applications of oxygen such as 10-30MW gasifiers or 1 to 10 TPD systems by providing air separation at small-scale matching air separation cost of larger cryogenic separation systems.

DOE/NETL Cooperative Agreements DE-FE0031527

RTI International

Dr. John Carpenter Dr. Jianping Shen Dr. Qinghe (Angela) Zheng Dr. Jak Tanthana Dr. Paul Mobley Dr. Jian Zheng Dr. Jian Zheng Dr. Vijay Gupta Dr. Mustapha Soukri Jonathan Peters **GTRC**

DOE\NETL

Diane Madden

<u>Air Liquide</u>

Raja Swaidan Philippe Coignet

Dr. Matther Realff Dr. Hector Octavio Rubiera Landa

Contact Information: Dr. John Carpenter 919.541.6784 jcarpenter@rti.org