Stacked Greenfield and Brownfield ROZ Fairways in the Illinois Basin Geo-Laboratory: Co-optimization of EOR and Associated CO₂ Storage

DOE Project Number DE-FE0031700

Nathan Webb - PI

Nathan Grigsby, Fang Yang, Scott Frailey

IILLINOIS

Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE

U.S. Department of Energy National Energy Technology Laboratory 2020 Carbon Storage Virtual Project Review Meeting

September 8, 2020

Program Overview

- Funding: \$4,373,828
 - DOE Share: \$3,455,947
 - Cost Share: \$ 917,881
- Project Performance Dates: 2/1/19 to 1/31/23
- Project Participants:
 - University of Illinois Illinois State Geological Survey (Prime)
 - Podolsky Oil Co.
 - Projeo Corp.
 - Indiana Geological and Water Survey

ILLINOIS Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE

Program Overview Objectives

DOE Program

 Develop specific subsurface engineering approaches leveraging CO₂ injection field tests and applied research and development, that address research needs critical for advancing CCS to commercial scale

Stacked ROZ Fairways in ILB Geo-Laboratory

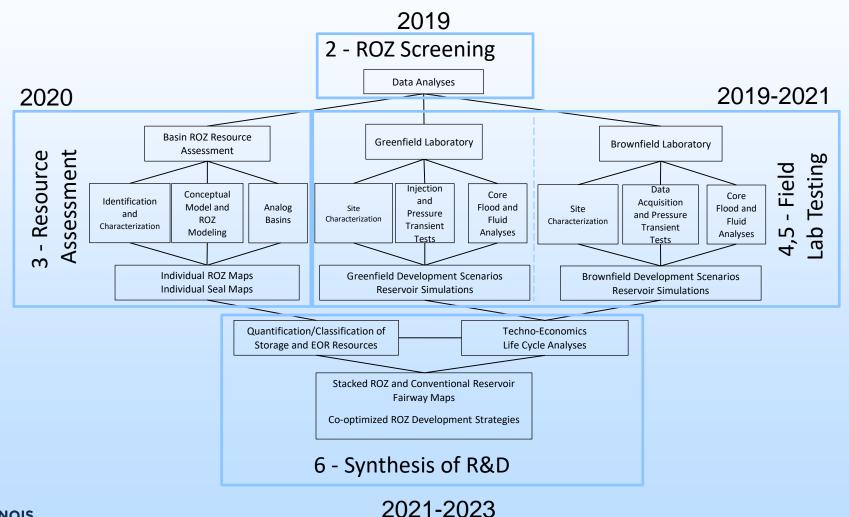
- Screen for ROZs using analysis of empirical data and basin evolution modeling
- Characterize stacked brownfield/greenfield siliciclastic ROZs at field laboratory sites
- Conduct injection tests and collect and analyze core and logs at field laboratory sites
- Employ calibrated simulation models and life-cycle analyses for identifying development strategies

Technical Approach

Project Milestones

Milestones provide success criteria for gaging the qualitative and quantitative performance of the project and are decision points to determine if the project should proceed.

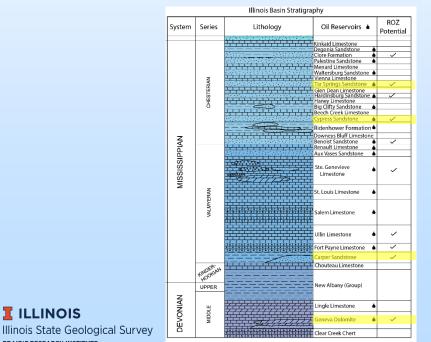
BP: Task	Milestone title	Planned completion	Actual completion	Verification method
BP 1 Task 1	Complete project management plan	03/01/2019 (year 1)	03/01/2019	PMP file
BP 1 Task 1	Project kickoff meeting	02/01/2019 (year 1)	11/06/2018	Presentation file
BP 2 Task 4	Finalize plan for data collection and testing at greenfield laboratory sites	07/31/2020 (year 2)	7/31/2020	Report in subsequent quarterly report
BP 2 Task 5	Finalize plan for data collection and testing at brownfield laboratory sites	04/30/2020 (year 2)	11/28/2019	Report in subsequent quarterly report
BP 2 Task 5	Complete testing of fluid and core samples of target CO ₂ reservoir(s) from field laboratory sites	03/01/2021 (year 3)		Report in subsequent quarterly report
BP 3 Task 6	Complete strategies for co-optimization of CO ₂ -EOR and storage in stacked reservoirs (w/ROZs and depleted reservoirs)	01/31/2022 (year 3)		Report in subsequent quarterly report
BP 3 Task 6	Complete fairway maps	10/31/2022 (year 4)		Report in subsequent quarterly report
BP 3 Task 1	Document project results	01/31/2023 (year 4)		Submit final report


Technical Approach

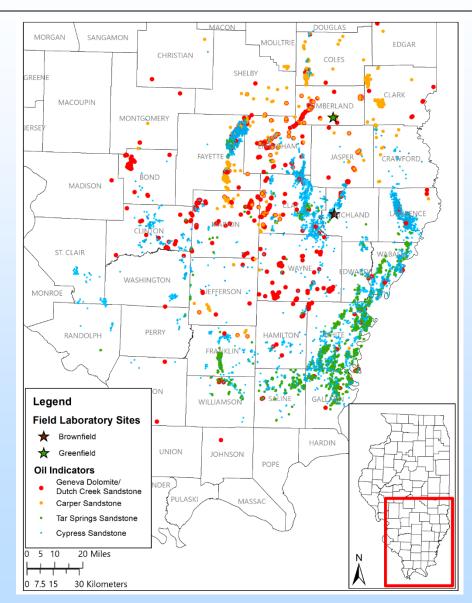
Risk Matrix

The risk matrix is used to identify, assess, monitor and mitigate technical uncertainties and schedule, budgetary and environmental risks associated with the project

		Risk Ratin	g			F	lisk Ratii	ng				
Perceived Risk	Prob.	Impact	Overall	Mitigation/Response	Perceived Risk	Prob.	Impact	Overall	Mitigation/Response			
Perceived Risk	Prop. Impact Over		Overall	Strategy		(Lov	v, Med, l	High)	Strategy			
	LO (LO	w, Med, H	ligh)		Management Risks:	-						
Financial Risks:					Occasional				f staff time is mandatory to			
Field laboratory test budget exceeded	Low	Med	t	additional cost occurs due to he delay of field personnel or quipment issues, change in	unavailability of personnel	Med	Low	LOW	keep on schedule, non-project staff will be available to work on project temporarily.			
				uration or number of ROZs ested would be reduced	Loss of key personnel	Low	Med		Temporarily allocate tasks among team and initiate hire			
Cost/Schedule Risks:					Planning and Oversight	t Risks:						
Delay in field activities due to severe weather condition	Low	Med	a p	project meeting would be held mong research team and field ersonnel to reschedule and eprioritize tasks	Well cannot be drilled in year 2 due to rig availability or weather	Low	Low	Low b	Greenfield lab schedule will be moved up and switched with the brownfield schedule			
					EH&S Risks:							
Technical/Scope Risks: Delay in acquiring data	Low	Med	19	ssemble and digitize existing SGS and literature data to	Field laboratory sites in environmentally sensitive areas	Med	Med	á	Jse existing infrastructure and non-invasive sampling and testing techniques			
			•	rovide preliminary estimates	External Factor Risks:							
			a	nd update data when available	An operator becomes	Low	Med		Coordinate with backup			
Injection test failure due to a well integrity	Low	Med	t	dentify analogous wells within he field operated by the same ompany	unavailable to facilitate data collection and testing in the field laboratory				operators at other suitable ield laboratory sites			

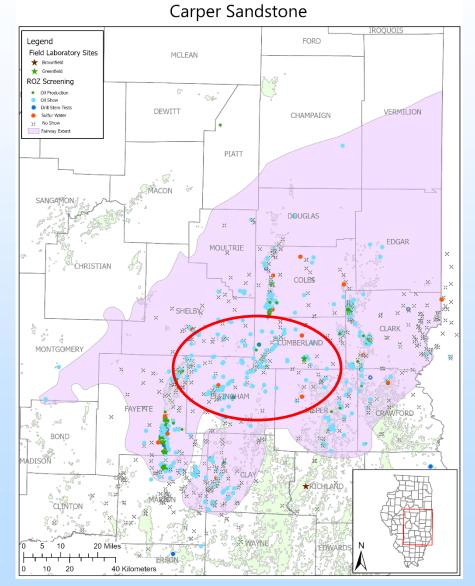

Project Tasks

ILLINOIS Illinois State Geological Survey Prairie research institute


ROZ Screening

- Selected four formations for regional characterization based on:
 - Geologic properties (porosity, permeability, fairway potential)
 - ROZ indicators (oil shows, core with $S_0 > 0$, DSTs with sulfur water – e.g. Trentham and Melzer 2013)
 - Data availability (well logs, core)

IILLINOIS


PRAIRIE RESEARCH INSTITUTE

Resource Assessment

Identifying and characterizing ROZs in selected formations

- Identification based on historical data
- Characterization using well log analysis
 - Constrain parameters by formation for log analysis
 - Input: R_w, porosity, *m*, clay properties
 - Output: POWC, OWC, S_{or}
 - Extrapolate OWC and S_{or} to prospect boundaries to estimate OOIPs

ILLINOIS Illinois State Geological Survey Prairie Research Institute

Field Laboratory Tests

Greenfield Site

- Performing pressure transient tests in existing well with validated greenfield ROZ
- Conduct short term CO₂ injection test (huff n' puff) to acquire oil rate change
 - Characterize ROZ
 - Demonstrate efficacy of CO₂-EOR in ROZ
- Field work ongoing through remainder of 2020

Brownfield Site

- Drilled new well for reservoir characterization
 - Collected core and logs to validate Cypress ROZ
 - Correlating with previous field laboratory RST logging
 - Investigating geologic controls on residual oil saturation
 - Refining geologic interpretation
 - Sampled reservoir fluids
 - Performed drill stem test
- Field work completed fall 2019

Greenfield Test: Challenges

Well: Drilled in 2016 to Carper Ss., ~6 months of pumping with minimal oil production

- Observed fluid production (~200 bbls/day) not possible (15' perforated zone; 0.2 mD)
 - Suspect natural fracture network
- Reservoir simulations indicate single-well CO₂ huff n' puff will increase oil rate to 1-2 bbl/day
 - Injected CO₂ will likely remain in fractures and have limited contact with oil in low permeability matrix
 - High pressure could stimulate production, but quickly depletes once injection stops
 - Uncertainty in fracture/matrix communication hard to quantify

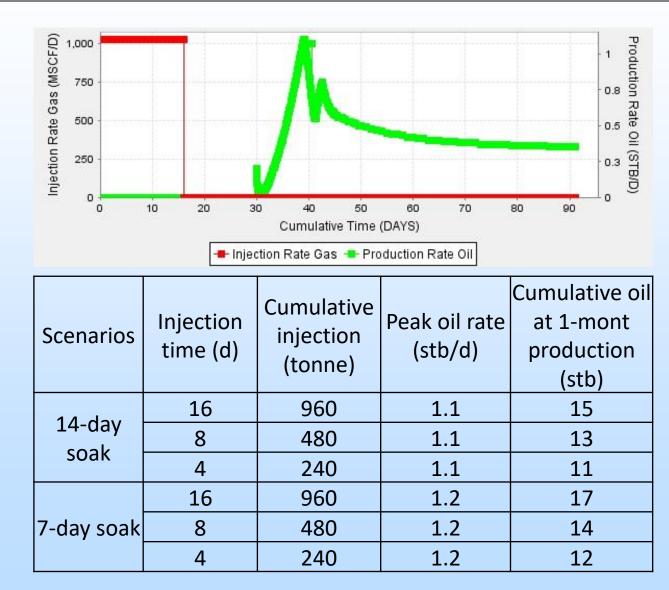
Greenfield Test: Simulations

Base model

- Natural fracture model to match historical water production
- Include negative skin and molecular diffusion

HnP

- Analyze sensitivity of injection rate and duration, soak period, water injection on oil response
- Design limits and recommendations

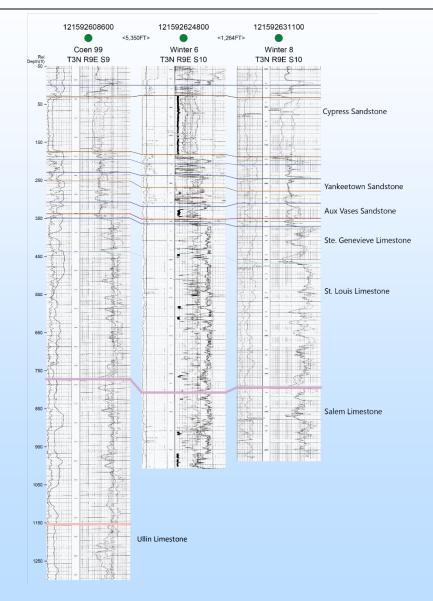

Line drive

• Predict field-scale response

Greenfield Test: Simulations

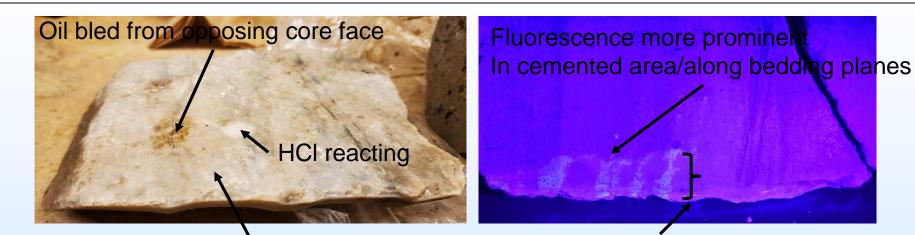
- Higher rate and volume is desired
- Given 60 t/d, total 1,000 t
 CO₂, injection duration and soak time had little effect on oil response
- Two cycles of HnP could be beneficial

ILLINOIS Illinois State Geological Survey Prairie research institute



Greenfield Test: Design

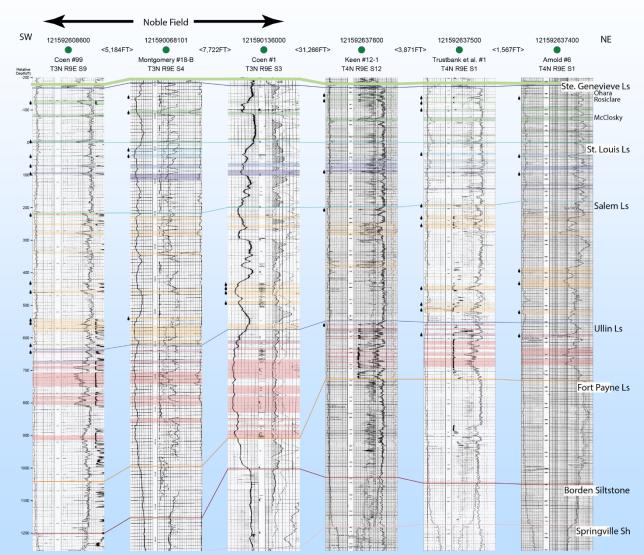
- Pressure transient test
 - Attempt to confirm natural fracture network and determine if it permits communication between units
- Huff n' Puff
 - Design to maximize oil rate increase
 - Use equipment from previous ISGS CO₂-EOR project
 - Inject volume of CO₂ that the budget allows (~1000 tons) at pump capacity (~60 tons/day)
 - Use findings to improve reservoir simulations to see if higher injection rate, more volume, more injectors would yield more oil


Brownfield Lab: Characterization

- Analyzing core and logs collected in 2019
- Correlating and mapping stacked ROZs and conventional reservoirs
 - Seven producing reservoirs; additional formations with oil indicators

ILLINOIS Illinois State Geological Survey Prairie research institute

Brownfield Lab: Characterization


 ~ 0.5 " halo of calcite cement along fracture Face of fracture has frosted appearance

ILLINOIS Illinois State Geological Survey Prairie research institute

Bleeding oil

Brownfield Lab: Characterization

ILLINOIS Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE

Field Labs: S₀ Determination

- Used log analysis to estimate S_o for oil bearing intervals to populate stacked reservoir models
- Greenfield
 - Lower Penn, Cypress, Carper, Geneva have potential greenfield ROZs
- Brownfield
 - Cypress, Aux Vases, Ste. Genevieve, St Louis, Salem, Ullin all produce oil at Noble
 - Calculations rely on modern logs which capture depleted reservoir
 - Compare to dielectric logs at CW10 to validate

Field Labs: Stacked ROZ potential

Greenfield

Data: GR, Induction, Porosity logs ; Core through Carper Ss

Formation	Depth (ft)	Saturated Thickness (ft)	Saturation
Penn	1,650	25	20%
Cypress	2,300	40	30%
Carper	3,550	20	20-30%
Geneva	4,050	40	

*oil saturation occurs over multiple noncontiguous porosity zones

Brownfield

Data: GR, Spectral, Induction, PNL Porosity, Sonic, Dielectric, FMI; Core through Cypress Ss

Formation	Depth (ft)	Saturated Thickness (ft)	Saturation
Cypress	2600	25	40%; 25%
Aux Vases	2900	10	30-40%
Ste. Genevieve	3000	15	30%
St. Louis	3150	15*	30-60%
Salem	3350	40*	20-40%
Ullin	3700	10	40%

Field Labs: Stacked Reservoir Modeling

- Perform pressure pulse modeling to assess reservoir connectivity within stacked formations to determine
 - Model representation of conceptual geology
 - Viability of each formation for CO₂–EOR and associated storage
- Approach
- Water injection
- Perform 9-spot pattern modeling
 - A centrally located injector and 8 observation wells
 - 10-, 40-, and 80-acres pattern sizes

Results:

 Reservoir connectivity decreases with increasing pattern size and porosity cutoff in discreet carbonate reservoirs

Synergy opportunities

- Methodologies for finding and characterizing ROZs in mature basins developed as part of this study are applicable in other basins
 - We look forward to comparing the results with findings from the Williston and Powder River Basins
- Siliciclastic ROZs in other basins are expected to have similar characteristics to Illinois Basin ROZs
 - Lessons learned from CO₂ flooding in siliciclastics in the Powder River Basin would be applicable to our ROZs

Project summary

Key Findings

- Selected ILB formations have oil indicators outside of productive areas and potential for ROZs
- Reservoir simulations indicate 1,000 t CO₂ huff n' puff will increase oil rate to 1-2 bbl/day in 15' thick, low perm Carper Ss.

Lessons Learned

- Field laboratory research requires extra attention to detail to:
 - Reconcile schedule (project vs. operator vs. weather), meet all stated objectives, stay on budget

Future Work

- Complete regional characterization of selected ROZs
- Complete analysis of Brownfield core and logs
- Complete field laboratory research
 - Design injection test for greenfield site

Acknowledgments

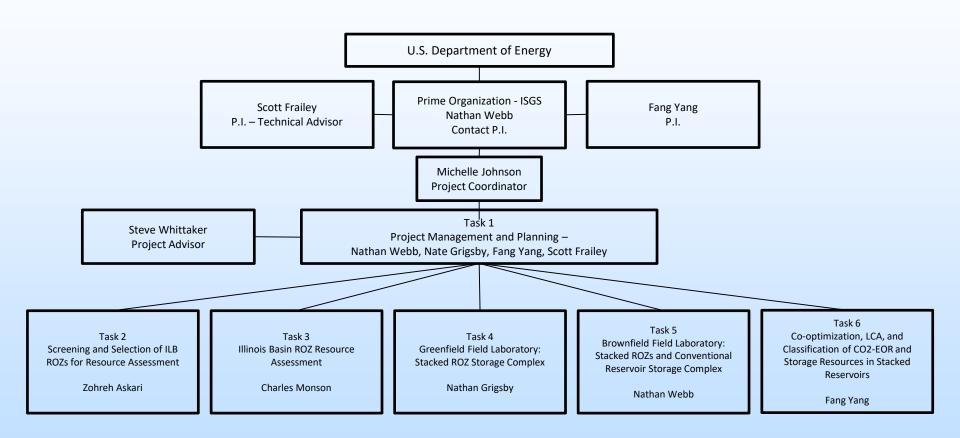
- Research herein supported by US Department of Energy contract number DE-FE0031700, FPM Andrea McNemar
- Through a university grant program, IHS Petra, Geovariences Isatis, and Landmark Software were used for the geologic, geocellular, and reservoir modeling, respectively
- For project information, including reports and presentations, please visit:

http://www.isgs.illinois.edu/research/ERD/NCO2EOR

Appendix: Benefit to the program

- Goal: The Storage Infrastructure Technology Area research effort is carrying out regional characterization and small- and large-scale field projects to demonstrate that different storage types in various formation classes, distributed over different geographic regions, both onshore and offshore, have the capability to permanently store CO₂ and provide the basis for commercial-scale CO₂ projects. This, working together with the two other research areas, address significant technical challenges in order to meet program goals that support the scale-up and widespread deployment of CCS.
- Benefits Statement: This research will potentially demonstrate CO₂-EOR and associated storage as an economically feasible option for smallmiddle size operators in the Illinois Basin and drive demand for CO₂ and investment in infrastructure.

Appendix: Project Overview Goals


DOE Program

- ROZs:- formation, characterization, and associated storage in conjunction with EOR
- Co-optimizing CO₂-EOR with associated storage in storage complexes that have stacked reservoirs

Stacked ROZ Fairways in ILB Geo-Laboratory

- Identify and characterize primarily siliciclastic ROZs and quantify the CO₂-EOR and associated storage resource using data collected and test results from greenfield and brownfield field laboratory sites
- Design economic development strategies to co-optimize CO₂-EOR and associated storage in stacked storage complexes using reservoir simulations calibrated to field laboratory test results

Appendix: Organization chart

Appendix: Gantt chart

Task Names			et P	erio									E	Budge		riod	2												/	Budg	jet Pe	eriod					
		2019													2020				2021											202			2023				
	Feb	Mar	Apr N	1ay Ji	un Ju	l Aug	Sep (Dot N	Vov De	o Jan	Feb N	1ar Ap	r May	Jun J	lul Au	g Sep	Oct	Nov De	c Jan	Feb M	lar Ap	or May	Jun	Jul A	ug Se	p Oct	Nov De	ec Jan	Feb	Mar F	Apr Ma	y Jun	Jul A	ug Ser	o Oct	Nov Dec	
	Q	1		Q2		Q3		(Q4		Q5		Q6		Q	7		Q8		Q9		Q10)	0	211		Q12		Q13		Q1	4	G	215		Q16	Q17
1.0 - Project Management and Planning																																4					
Project Management																																					
Complete Project Management Plan	м																																				
Kick off Meeting	М																																				
Document Project Results																																					M
2.0 - Screening and Selection of ILB ROZs for Resource Assessment																																					
2.1 - Synthesize ILB data for basin-scale ROZ characterization																																					
2.2 - Analyze ILB and operator data at greenkield and brownkield kield laboratory sites																																					
2.3 – Identify analogous basins																																					
2.4 - Selection of ILB geologic formations to study for basin resource assessment																														\square							
3.0 – Illinois Basin ROZ Resource Assessment																														\square							\square
3.1 - Characterize siliciclastic ROZ fairways																													\square	\square							\square
3.2 - Characterize overlying seals within the RO2 (airways																																					\square
3.3 – Model oil source and migration into ROZ fairways																													\square	\square							\square
34 - Create maps of individual ROZ fairways																																					\square
4.0 – Greenfield Field Laboratory: Stacked ROZ Storage Complex																													\square	\square							\square
4.1 - Develop conceptual geologic model of ROZs at the lab site																													\square								\square
4.2 - Develop geocellular models based on the conceptual model																													\square	\square							\square
4.3 - Design and implementation of pressure transient test and an injection test													1																\square								\square
4.4 - Complete core, Huid, log, and pressure transient analyses													ĨXIIII.													+		1	\square		-	+		-			
4.5 - Calibrate reservoir models to field laboratory data											"															+		-	\square		_	++	-	_			
4.6 - Develop injection strategies to maximize storage, EOR, and net present value																									-	+		1	\square		-	+		-			
Finalize plan for data collection and testing at greenfield site														4	м														\square								\square
5.0 - Brownfield Field Laboratory: Stacked ROZs and Conventional Reserve	oir Ste	orag	e Cor	nplez																						+		_	\vdash		_	++	+	_	+		
5.1 - Develop conceptual geologic model of stacked ROZs and conventional reservoirs at si	e	-																								+		-	\square			++	-	_			
5.2 - Develop geocellular models based on the conceptual model																									-	+		1	\square		-	++		-			
5.3 – Design coving, Ruid sampling, pressure transient testing and logging program																										+		-	\square			++	-				
5.4 - Complete core, Huid, log, and pressure transient analyses										/////	///////		1												-	+		1	\square		-	++	-	-			
5.5 - Calibrate reservoir models to the geocellular model using the field laboratory data													"													+		-	\square			++	-				
5.6 - Develop injection strategies to maximize storage, EOR, and net present value																									-	+		1	\square		-	++	-	-			
Finalize plan for data collection and testing at brownfield site												M														+		+		\square	+	++	-	-	+		
Complete testing of fluid and core samples of target CE2 reservoiors from field laboratory sil	tes																				м				-	+		-	\vdash		_	++	+	_	+		
6.0 – Co-optimization, LCA, and Classification of CO ₂ -EOR and Storage Re	sour	ces i	n Sta	cked	Rese	rvoirs																															
6.1 - Identify economic development strategies of greenfield stacked reservoirs																																+		—			\square
8.2 - Identify economic development strategies of brownfield stacked reservoirs																																+	\neg	-	+		
63 - Perform LCA on brownfield and greenfield developments with potential ILB CO ; source	285																																				
64 - Estimate and classify CO ; storage and CO ; -EOR for the ILB using storage efficiency																																					
6.5 - Complete fairway map of stacked ROZs, conventional reservoirs, and seals																																					
Complete strategies for co-optimization of CD2-EDR in stacked reservoirs		-	-			1																+				17		M									
Complete Fairway maps																									-	+		-	+		-	++	-	-	M		
· · · · · ·					_	-				_			_			_	-					_				ليصب			┙	<u> </u>		┶━━┷	<u> </u>		لخنب		