
Development of a Framework for Data 

Integration, Assimilation, and Learning for 

Geological Carbon Sequestration

(DIAL-GCS)
Project Number DE-FE0026515

Alex Sun

Bureau of Economic Geology

The University of Texas at Austin

U.S. Department of  Energy

National Energy Technology Laboratory
Carbon Storage Project Review Webinar

September 8-11, 2020



2

Program Overview
Developing a multi-tiered, intelligent monitoring system (IMS)

for automating CCS modeling/monitoring tasks
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Program Overview

– Funding 

• Federal $1.23 M, Cost Share $346k

– Overall Project Performance Dates

• Oct 1, 2015–March 31, 2021

– Project Participants

• Bureau of Economic Geology

• Texas Advanced Computing Center

• Graduate students and postdocs
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Technical Approach/Project Scope

(1-2 Slides)

A. Technical Approach/Project Scope

a.Major project tasks and schedule
• Task 2: Sensor data schema development and provisioning (Y1)

• Task 3: Development of CEP, machine learning (Y1-3)

• Task 4: Coupled modeling, UQ, and data assimilation  (Y1-5)

• Task 5: System integration and demonstration (Y1-6)

This project includes a number of meaningful and necessary tasks to 

transform the human domain knowledge into machine-interpretable rules

for automating knowledge extraction and discovery in GCS
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Technical Approach/Project Scope

b. Project success criteria 
• A meaningful set of use cases are identified and the corresponding 

methods are developed

• A suite of computational tools are developed for expediting 

optimization, uncertainty quantification, and predictive analytics

• The developed tools are integrated and demonstrated over realistic 

datasets

c. Significant project risks
• Web implementation and integration
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Progress and Current Status of 

Project



Key Capabilities of DIAL-GCS

• Real-time sensing and anomaly detection
– Cranfield controlled release data

– Surface gas controlled leak data

– Forge distributed acoustic sensing data

• Tools for optimizing GCS monitoring and 

project planning
– Multiobjective optimization under uncertainty

– Reinforcement learning
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DIAL-GCS Cranfield Use Case

• Demonstrated 

real-time sensing

• Complex event 

processing

• Flexible 

framework

ML

Sun et al., 2019
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DIAL-GCS 2.0

Design 2.0:

• Kafka-based

• Flexible

ML

DIAL-GCS Cranfield Use Case
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Sun et al., 2018, Metamodeling-based approach for risk assessment and cost estimation: 

Application to geological carbon sequestration. Computers & Geosciences.

DIAL-GCS Leakage Cost Estimation Use Case

• A web-based tool for project planning & risk assessment

• Illustrated reduced-order modeling and uncertainty quantification on the 

web
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Types of metamodels currently 

supported:

• Gaussian process regression

• Sparse grid

DIAL-GCS Leakage Cost Estimation Use Case
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Objective 
Function

Well cost =
CAPEX($/well)+ 

OPEX($/well/day)+
Intervention($/well)

Leakage cost =
Brine($/ton)+ 
CO2($/ton)

Constraints

# of monitoring 
wells ≤ Nmax

CO2 leakage ≤ M% 
of total injected CO2

∆P at tleakage detection

≥ ∆Pthreshold

Optimization 
toolbox

Binary Integer 
Programming

• Linear problem

• Convex

Optimize 
monitoring 

network

Jeong et al., 2018b, Cost-optimal design of pressure-based monitoring 

networks for carbon sequestration projects, with consideration of geological 

uncertainty, International Journal of Greenhouse Gas Control.

Cost-Effective GCS Monitoring Network Design Use Case
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Optimization 
Toolbox for Pressure 
Monitoring Network

……

Our tool maximizes NPV by considering 

• High uncertainty in geologic models

• Monitoring budget

• Leakage damage cost

• 45Q carbon tax credit

3D model site scale 

models
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• Multi-period planning horizon

• The operator wants to maximize total CO2 storage while minimizing risks

• Very expensive optimization problem 

• We combined deep reinforcement learning and surrogate modeling to 

expedite the process

Optimal GCS Reservoir Management Use Case 

Sun, 2020
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Use surrogate model to handle 

variable injection rate
Injector

Monitoring wells
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Joint Fluid-Seismic Inversion Use Case 

Zhong et al., JGR, 2020
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Web Implementation of 

ML-assisted reservoir 

state prediction
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Web implementation 

of gas leakage 

detection system
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DAS data stream 

anomaly detection



20

Accomplishments to Date

• Task 2: Data management

• Developed data schema and data adaptors for storing, 

exchanging information, and visualizing information

• Task 3: Complex event processing using machine learning (ML)

• Implemented predictive models on different test datasets

• Continued to update the existing platform

• Task 4: Coupled modeling / data assimilation

• Implemented workflow for automating data assimilation. 

Focused on ML and DL tool development

• Task 5: Integration and demonstration

• Experimented with a large number of web-based technologies 

for making the system more user friendly



21

Lessons Learned

• Combining machine learning with domain knowledge 

may significantly improve efficacy of GCS 

management and risk mitigation

• Time series anomaly detection can be automated 

effectively with current technologies

• High-dimensional cases (e.g., distributed acoustic 

sensing) present more challenges

• All anomalies are different and no single method 

works for all cases

• The community needs a functional spec for intelligent 

monitoring system for GCS 
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Summary Slide

Project Summary 

a. We developed a suite of tools for automating monitoring and 

anomaly detection in geological carbon sequestration projects

b. Combined machine learning with domain knowledge, 

implemented a web-based platform, and demonstrated over 

real and synthetic data

c. Results suggest that combining modern instrumentation with 

integrated, off-the-shelf platforms can significantly improve 

monitoring effectiveness.

Future plans

a. Finish implementing and integrated Web-based tools

b. Complete the final project report



Appendix

– These slides will not be discussed during the presentation, but 

are mandatory.
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Organization Chart
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Gantt Chart


