Partnership for Offshore Carbon Storage Resources and Technology Development in the Gulf of Mexico

DE-FE0031558

Susan Hovorka

Co-I Tip Meckel and Ramon Treviño

Gulf Coast Carbon Center, Bureau of Economic Geology

Jackson School of Geosciences The University of Texas at

Austin

Darshan Sachde Trimeric Corporation

U.S. Department of Energy

National Energy Technology Laboratory

Carbon Capture Front End Engineering Design Studies and CarbonSafe 2020 Integrated Review Webinar

August-17-19 2020

Program Overview

- Funding
 - DOE: \$14 million (5 years)
 - Cost Share: \$3.5 million
- Overall Project Performance Dates
 - BP 1 (NCE 3/31/20 → 12/31/20)
 - BP 2 1/1/21 3/31/23

New – 3-D porosity volume Melianna Ulfah, GCC and EER – JSG UT

Partnership Participants

Institution	Location	Expertise
University of Texas at Austin		Project Lead
Gulf Coast Carbon Center	Austin, TX	Geo-Sequestration
Gulf of Mexico Basin Synthesis		
(GBDS)	Austin, TX	GoM Basin Regional Geology
Petroleum & Geosystems		
Engineering	Austin, TX	Reservoir Simulation
Stan Richards School	Austin, TX	Public Relations
Aker Solutions	Houston, TX	Subsea Infrastructure
Fugro	Houston, TX	MVA Technologies
TDI-Brooks, Intl.	College Station, TX	MVA Technologies
Lamar University	Beaumont, TX	Risk Assessment; Outreach
Trimeric	Buda, TX	Engineering; Infrastructure & Operations
USGS	Reston, VA	Characterization & Capacity Assessment
Louisiana Geological Survey	Baton Rouge, LA	Database Development
Texas A&M (GERG)	College Station, TX	Ocean & Environmental Science
LBNL	Berkeley, CA	Risk Assessment; MVA Technologies
LLNL	Livermore, CA	Risk Assessment

Technical Approach/Project Scope

Task 2: Offshore Storage Resource Assessment

Task 3: Risk Assessment, Simulation & Modeling

Task 4: Monitoring, Verification & Assessment

Task 6: Knowledge Dissemination

Task 5: Infrastructure, Operations & Permitting

Progress and Current Status Task 4 -- Offshore Storage Assessment Data

Mapping Fault Compartments

Progress and Current Status Offshore Storage Assessment

Identifying Storage Leads Example – Mid Texas Coast

Log Cross Sections

Note stacked sandstone reservoir in part of Miocene assessed Lateral changes show depositional architecture - impact on storage

LLOG 1

ST TR 00592-L

Datum

Tri-Union 1

ST TR 00563-1

B'

Coastal States Gas 1

ST TR 00592-1

Using seismic amplitude to define facies – storage fairways

Depositional Systems Interpretations (mid-Tx coast)

11

Defining Storage Leads Fetch & Trap

Traps

Mike D'Angelo & Dallas Dunlap, GCC/ BEG UT

Identifying Storage Leads

Mike D'Angelo GCC/ BEG UT

Risk Assessment, Simulation & Modeling (Task 3)

Original Research Article

Major CO₂ blowouts from offshore wells are strongly attenuated in water deeper than 50 m

Curtis M. Oldenburg i and Lehua Pan, Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract: Growing interest in offshore geologic carbon sequestration (GCS) motivates evaluation of the consequences of subsea CO₂ well blowouts. We have simulated a hypothetical major CO₂ well blowout in shallow water of the Texas Gulf Coast. We use a coupled reservoir-well model (T2Well) to simulate the subsea blowout flow rate for input to an integral model (TAMOC) for modeling CO₂ transport in the water column. Bubble sizes are estimated for the blowout scenario for input to TAMOC. Results suggest that a major CO₂ blowout in ≥50 m of water will be almost entirely attenuated by the water column due to CO₂ dissolution into seawater during upward rise. In contrast, the same blowout in 10 m of water will hardly be attenuated at all. Results also show that the size of the orifice of the leak strongly controls the CO₂ blowout rate. © 2019 Society of Chemical Industry and John Wiley & Sons, I td

Keywords: CO2 well blowout; wellbore modeling; offshore well blowout; buoyant plume; integral plume model: CO₂ in water column

Introduction

nterest in offshore continental shelf regions for geologic carbon sequestration (GCS) is growing in the United States and elsewhere, and with that comes the need to understand consequences of very rare and unexpected high-flow-rate carbon dioxide (CO2) well blowouts and pipeline ruptures. Such failures of containment were addressed in the 2005 IPCC Special Report,1 but killing well blowouts was reported then to be routine and effective, contrasting with the recent experiences with two well-known hydrocarbon well blowouts, the 2010 Deepwater Horizon2 and 2015 Aliso Canyon incidents,3 both of which took several months to plug. Although there is no explosion or flammability hazard associated with pure CO2, there are health and safety hazards of high

CO2 concentrations in air associated with inhalation that could result from CO2 bubbling to the sea surface But in the offshore environment, the risk to humans is inherently lower relative to most onshore scenarios because the population at risk is limited to the few people on boats, ships, and platforms. Nevertheless, it is necessary to quantify the behavior and potential consequences of major CO₂ blowouts and pipeline ruptures originating at the seafloor, particularly in shallow water (water column < 150 m (500 ft)). For example, in order to assess the risk of major CO2 blowouts we need to know whether the blowout will cause CO2 surface emissions and create a sea-surface-hugging atmospheric CO2 plume that is hazardous to people and marine life, or create a geyser-like emission, or bubbly and turbulent sea surface causing instability for boats and ships. Or

Correspondence to: Curtis M. Oldenburg, Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA E-mail: cmoldenburg@lbl.gov O SCI

Received September 21, 2019; revised November 21, 2019; accepted November 27, 2019 Published online at Wiley Online Library (wileyonlinelibrary.com), DOI: 10.1002/ghg.1943

Curt Oldenberg, LBNL

Monitoring Verification Accounting (Task 4) – Fiber optic

RESEARCH

SEISMOLOGY

Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing

Nathaniel J. Lindsey^{1,2}*, T. Craig Dawe³, Jonathan B. Ajo-Franklin^{2,4}

Distributed fiber-optic sensing technology coupled to existing subsea cables (dark fiber) allows observation of ocean and solid earth phenomena. We used an optical fiber from the cable supporting the Monterey Accelerated Research System during a 4-day maintenance period with a distributed acoustic sensing (DAS) instrument operating onshore, creating a ~10,000-component, 20-kilometer-long seismic array. Recordings of a minor earthquake wavefield identified multiple submarine fault zones. Ambient noise was dominated by shoaling ocean surface waves but also contained observations of in situ secondary microseism generation, post-low-tide bores, storm-induced sediment transport, infragravity waves, and breaking internal waves, DAS amplitudes in the microseism band tracked sea-state dynamics during a storm cycle in the northern Pacific. These observations highlight this method's potential for marine geophysics.

he underwater environment that covers | erage. The impact has included quantification 70% of Earth's surface poses major logistical challenges to seafloor studies. Marine geophysical research is conducted with large research vessels, temporary earth processes remain spatially aliased.

в

of offshore seismic hazards (4, 5), submarine volcanism (6), marine ecology, and ocean transport (7), yet many oceanographic and solid-

Possibly useful - near-offshore GCS

Fig. 1. MARS DAS experiment. (A) Map of Monterey Bay, CA, shows MARS cable (DAS, pink portion), mapped faults. Girov earthquake (red-and-white beach ball), seismometers BK.SAO and BK.MOBB (green squares). NOAA buoy 46042 (yellow diamond), and major bathy metric features. (B) Crosssection illustration of MARS cable used for DAS.

Monitoring Verification Accounting Sea water

Figure 4.1.2.1. Map of TABS buoys.

GERG – TX A&M

Monitoring Verification Accounting (Task 4)

Seismic Tail Buoy Testing

HR3D

On-land (backyard) Buoy GPS Test

Knowledge Dissemination (**Task 6**)

Partnership for Offshore Carb Technology Development in th Reynolog Effanz, Jip Mockel, Ramon Trevino, Omer Ramirez Ga

1. Abstract

works y criteric lace

4. Site Assessment

Carbon Capture and Storage (CCS) a Climate Change Mitigation Strategy That Requires Subsurface Geological Knowledge

April 22, 2020 – Earth Day

Ramón Treviño

Gulf Coast Carbon Center (GCCC) Bureau of Economic Geology (BEG) Jackson School of Geosciences The University of Texas at Austin

Bureau of Economic Geology

TEXAS Geosciences Bureau of Economic Geoloay kson School of Geoscience iversity of Texas at Austi-

WHAT STARTS HERE CHANGES THE WORLD

Progress and Current Status of Project (Task 5: Infrastructure, Operations, & Permitting)

Infrastructure Re-use Overview

- Wells, Pipelines, and Platforms for Oil and Gas Production = Potential Re-use Targets
- Goals:
 - Develop screening criteria to assess the scale of the opportunity
 - Identify high priority opportunities for more detailed assessment
 - Identify data gaps/needs/challenges

Infrastructure Re-use: Pipeline Screening

Sources: BSEE/BOEM Prepared by Darrell Davis for Trimeric Corporation

*Key Segments = Come onshore & terminate near state waters

Infrastructure Re-use: Pipeline Workflow

Infrastructure Re-use: Pipeline Case Studies

Region/Location	Line ID	Last Owner	In Service Date	Size	MAOP (psi)	Length (miles)	Water Depth (feet)	Status	Comments
Texas (High Island)	5958	Renaissance Offshore	5/28/1981	8"	1440	15.99	39 - 50	OOS	Discrepancy between database operating pressure and documentation
Texas (High Island)	4073 5381 4613 4590	Williams TRANSCO	12/13/1979 1/28/1980	12" 24"	1392 - 1440	84 (system length)	43-75	Proposed Abandonment & Active	
Texas (Galveston)	7199 3489	Williams Black Marlin	12/1/1984	16"	1367	23.87	48-61	Proposed Abandonment	
Texas (High Island)	3493 5895	Panther Interstate Pipeline Energy	12/17/1981	16"	1200 (working pressure)	26.27	35 - 51	Pending Abandonment	
Louisiana (Vermillion/ White Lake)	5434	Columbia Gas Transmission	11/14/1984	36"	1253 (working pressure)	6.27	10 - 32	Abandoned In Place	Right of Way relinquished to U.S. gov't

Mid & Upper Texas Coast

Infrastructure Re-use: Emerging Opportunities

- Pipeline analysis illustrates value & limitations of "free" data
- Next Steps: Leverage Commercial Interest
 - Unsolicited contacts generated by GoMCarb research:
 - Three "project development" companies interested in 45Q CCS projects
 - O&G E&P Companies Evaluating CCS Projects
 - O&G Service Companies Looking to Leverage Expertise to support CCS projects
 - Multiple LNG Facilities evaluating CCS business case
 - LNG Facilities = Concentrated CO₂ = Low Cost of Capture
- Opportunity to provide value to commercial entities (GoMCarb research) with the goal of industry driving the next steps of evaluation
 - Examples: Detailed study of specific pipelines, development of project cost assessments, etc.
 - Coordinating the next stage of evaluation will be critical to avoid duplicative efforts, efficient use of industry resources and expertise

Summary

- Offshore GoM storage interest growing
 - Commercial / State
- Positive interactions with land owners and regulators
 - TX General Land Office
 - LA Fish and Wildlife and DEQ
- Dialog with several major GC CO₂ emitters
- Industries entering or expanding into carbon markets considering offshore
- Dialog with vendors
 - Equipment, well-retrofits
 - Platforms and pipelines

Appendix

These slides will not be discussed during the presentation, but are mandatory.

Organization Chart

Gantt Chart

Part	nership for Offshore Carbon Storage Resources and Technology	BUDGET PERIOD 1						BUDGET PERIOD 2													
	Development in the Gulf of Mexico	2018		2019			2020				2021				2022				2023		
Task	Tasks	qtr2	qtr3	qtr4	qtr 1	qtr2	qtr3	qtr4	qtr 1	qtr2	qtr3	qtr4	qtr 1	qtr2	qtr3	qtr4	qtr 1	qtr2	qtr3	qtr4	qtr 1
		A-M-J	J-A-S	O-N-D	J-F-M	A-M-J	J-A-S	O-N-D	J-F-M	A-M-J	J-A-S	O-N-D	J-F-M	A-M-J	J-A-S	O-N-D	J-F-M	A-M-J	J-A-S	O-N-D	J-F-M
1	Project Management, Planning, and Reporting	M1		M2																	M11
	Revision and Maintenance of Project Management Plan								G-NG												
	Progress Report	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
2	Offshore Storage Resources Characterization						M4			D2.1a		D2.2a	D2.3a		M8						
2.1	Database Development				M3																
2.2	Data Gap Assessment																				
2.3	Offshore EOR Potential																				
3	Risk Assessment, Simulation and Modeling				3.1a				M5		M6				D3.2a						
3.1	Risk Assessment and Mitigation Strategies																				
3.2	Geologic Modeling																				
4	Monitoring, Verification, Accounting (MVA) and Assessment					D4.1a							M7				D4.2a				
4.1	MVA Technologies and Methodologies																				
4.2	Plans for Field Testing of MVA Technologies																				
4.3	Testing MVA Technologies																				
5	Infrastructure, Operations, and Permitting						D5.1a						D5.2a							D5.3a	
5.1	CO2 Transport and Delivery																				
5.2	Scenario Optimization																				
5.3	Communication																				
6	Knowledge Dissemination			6.1a				6.2a			D6.3a					D6.3b	M9		M10		
6.1	Stakeholder Outreach																				
6.2	Technical Outreach																				
6.3	Advisory Panel																				

Q = Quarterly Report; A = Annual Report; M = Milestone; DP = Decision Point; D = Deliverable; G-NG = Go/no-go decision point; FR = Final Report