

SimCCS: development and Applications

(FWP-FE-1140-19-FY19)

Richard Middleton rsm@lanl.gov Earth and Environmental Sciences

> Los Alamos National Laboratory September 10th, 2020

LA-UR-20-26707

PROJECT BACKGROUND Development & Applications

Motivation: Advance the *SimCCS* toolset and further its application.

1: Development

- Fundamental data, tool, & science development.
- Accelerate SimCCS integration into DOE-FE projects (e.g., Regional Initiatives, CarbonSAFEs).

2: Applications

- Work with DOE-related initiatives (e.g., National Petroleum Council CCUS report, Regional Carbon Capture Deployment Initiative).
- Collaborate with non-traditional partners such as non-profit institutions.
- Expose DOE projects to *SimCCS* capabilities (e.g., Wyoming CarbonSAFE).

Middleton et al. (2020) Beam me up SCO_2T : Identifying geologic characteristics and operational decisions to meet global carbon sequestration goals, *Energy and Environmental Science*, In Review.

SIMCCS: PROJECT HISTORY Projects

- 1. CO₂-PENS (2009–2011) | Sponsor: DOE | PI: Pawar (LANL).
- 2. Western Energy Corridor Initiative (2009–10) | Sponsor: DOE | PI: Wolfsberg (LANL).
- 3. Southern Company case study (2011) | Sponsor: Southern Company | PI: Los Alamos (Middleton)
- 4. US-China CERC-ACTC (2011–present) | Sponsor: DOE | PI: West Virginia University (Wood).
- 5. Southwest Regional Partnership on Carbon Sequestration (2016–present) | Sponsor: DOE | PI: University of Utah (McPherson).
- 6. CarbonSAFEs (2017–present):
 - A. CAB-CS: Central Appalachian Basin CarbonSAFE Integrated Pre-Feasibility Project | Sponsor: DOE | PI: Battelle (Cumming).
 - B. Nebraska Basin CarbonSAFE Integrated Pre-Feasibility Project | Sponsor: DOE | PI: Battelle (Duguid).
 - C. CarbonSAFE in the Northern Michigan Basin Integrated Pre-Feasibility Project | Sponsor: DOE | PI: Battelle (Gupta).
 - D. CarbonSAFE Rocky Mountains Phase I: Ensuring Safe Subsurface Storage of CO₂ in the Intermountain West | Sponsor: DOE | PI: University of Utah (McPherson).
 - E. Establishing an Early CO₂ Storage Complex in Kemper County, Mississippi | Sponsor: DOE | PI: SSEB (Nemeth).
 - F. Integrated Midcontinent Stacked Carbon Storage Hub | Sponsor: DOE | PI: Battelle (Duguid).
 - G. San Juan Basin CarbonSAFE Phase III: Ensuring Safe Subsurface Storage of CO₂ in Saline Reservoirs | Sponsor: DOE | PI: Mexico Institute of Mining and Technology (Balch).
- 7. SimCCS: Development and Applications (2018–Present) | Sponsor: DOE | PI: Los Alamos (Middleton).
- 8. SimCCS heuristic development (2019) | Sponsor: Great Plains Institute | PI: Montana State University (Yaw).
- 9. Regional Initiative to Accelerate CCUS Deployment (2019–present):
 - A. Regional Initiative to Accelerate CCUS Deployment in the Midwest and Northeastern | Sponsor: DOE | PI: Battelle Memorial Institute (Gupta).
 - B. Carbon Utilization and Storage Partnership (CUSP) of the Western United States | Sponsor: DOE | PI: New Mexico Institute of Mining and Technology (Balch).
 - C. Southeast Regional Carbon Utilization & Storage Partnership (SECARB-USA) | Sponsor: DOE | PI: Southern States Energy Board (Nemeth).

SIMCCS: BACKGROUND Why, How, What

Why: Commercial-scale drivers

- **GLOBAL**: Climate mitigation policies.
- **US**: Economic incentives ("45Q").
- CHINA: Emissions Trading Scheme (ETS).
- INDUSTRY: Carbon footprint reduction.

How: Decision framework for CCS

- Design geospatial CCS infrastructure: CO₂ capture, transport, & storage.
- Open-source, Java-based, HPC-enabled framework with desktop & Science Gateway.

What: Scientific visibility

- **PAPERS:** 20+ publications, ~1,000 total citations.
- **PEOPLE:** ~100 (published/used/developed).
- WEBSITE: https://simccs.com/

10/5/2020 |

CO₂ management scenario (MtCO₂/yr)

CO₂ management scenario (MtCO₂/yr)

SIMCCS FRAMEWORK

Middleton et al. (2020) SimCCS: An open-source tool for optimizing CO2 capture, transport, and storage, Environmental Modelling & Software

MAP:

 Unformatted data sources for capture, transport, & storage.

BUILD:

 Capture, transport, & storage models to build SimCCS input data.

SOLVE:

- CORE: Linear program
- **OPTIMIZATION ENGINE:** HPC, desktop solver, or heuristic.

ANALYZE:

• Export & analyze SimCCS data.

SimCCS Interfaces:

- https://simccs.com/
- Desktop version.
- Science Gateway version.

Build: Capture

Why?

 Identify commercial-scale CO₂ capture opportunities.

How?

- **Fuse:** data from EPA GHGRP/FLIGHT, EPA eGRID, RFA (ethanol)...
- Fuse: data from 15+ literature sources for CO₂ streams & capture costs.

What?

- **GEODATABASE:** source locations, CO₂ streams, & capture costs.
- **SUPPLY CURVES:** Identify economic opportunities.

10/5/2020 | 6

Middleton et al. (2017) Industrial CO2 and carbon capture: near-term benefit, long-term necessity, Energy Procedia

Build: Transport

Why?

• **NECESSITY:** Where, how, & cost of CO₂ pipelines.

How?

- Nonlinear integration of ROWs (e.g., pipelines), barriers (e.g., rivers), population, topography, land use, ownership...
- SimCCS cost model.

What?

- New approach & software for developing cost & routing surfaces.
- Cost & routing surfaces, grid cells 100–1,000 m.

Yaw et al. (2019) Graph Simplification for Infrastructure Network Design, International Conference on Combinatorial Optimization and Applications Hoover et al. (2020) CostMAP: an open-source software package for developing cost surfaces using a multi-scale search kernel, IJGIS

Build: Storage

Why?

 Rapidly calculate realistic injection & storage & costs.

How?

- Build reduced-order models (ROMs) for CO₂ injection & plume dynamics.
- New ROMster approach for fusing ROMs.
- Connect dynamic CO₂ injection & storage with economics.

What?

 Excel-based tool for rapidly (1000s of realizations per second) calculating dynamic CO₂ injection, storage & costs.

10/5/2020 | 8

Build: Storage

Sensitivity analysis

Identify geologic parameters & combinations that have the greatest impact.

Uncertainty analysis

 Quantify impact of uncertain geologic characteristics including injection rates & costs.

Sequestration science

- Impact of limiting injection rates to 1 MtCO₂/yr.
- Impact of increasing depth.
- Impact of brine treatment.

10/5/2020 | 9

Middleton et al. (2020) Beam me up SCO₂T:Identifying geologic characteristics and operational decisions to meet global carbon sequestration goals, Energy & Environmental Science

Build: Storage

National storage

- Coupled SCO₂T database & SCO₂T tool.
- Dynamic injection/storage, not volumetric analysis.
- SCO₂T economics.
- Replicable, with uncertainty.
- Operational tool (e.g., well spacing, 1 MtCO₂/yr).
- Effect of brine treatment.
- **FUTURE:** nationwide understanding of CO₂ injection rates, storage capacities, & costs.

10/5/2020 | 10

Middleton et al. (2020) Great SCO27! Rapid tool for carbon sequestration science, engineering, and economics, Applied Computing & Geosciences

ANALYZE: GIGATONNE ONE SimCCS: CCS Infrastructure Decision Support

New ANALYSIS: Carbon Capture and Storage Infrastructure for Midcentury Decarbonization, https://www.betterenergy.org/blog/new-analysis-carboncapture-and-storage-infrastructure-for-midcentury-decarbonization/

Gigatonne-scale CCS

- US: CCS scale of 100s MtCO₂/yr to 1+ GtCO₂/yr
- **GLOBALLY:** Scale of several gigatonnes.
- **APPROACH:** Planning, financing, policy, risk assessment, de-risking investment, outreach...

Great Plains Institute

The REGIONAL CARBON CAPTURE DEPLOYMENT INITIATIVE is a network of 25 states, and growing, that work together to help ensure near-term deployment of carbon capture projects that will reduce carbon emissions, benefit domestic energy and industrial production, and protect and create high wage jobs. The Initiative provides unique and valuable opportunities for governors, state officials, legislators, and other stakeholders to engage at the state, regional, and national levels.

Los Alamos National Laboratory 10/5/2020 | 11

A-UR-20-26707

SIMCCS: R&D 100 Two 2019 R&D 100 Award Wins

R&D 100 Awards: "Oscars of Industry"

- R&D 100: Software and Services.
- Silver Medal: Corporate Social Responsibility.

Charted Territory (2019) SimCCS wins two awards at the 2019 R&D 100 Awards, https://chartedterritory.us/2019/11/16/simccs-winstwo-awards-at-the-2019-rd-100-awards/

SIMCCS Take Home Message

Synopsis

- Annual state of the SimCCS framework.
- FY20 outcomes.

Next-generation tools

- SimCCS: Decisionsupport for CCS infrastructure.
- *NICO₂LE*: CO₂ capture.
- **CostMAP:** CO₂ transport.
- **SCO₂T:** CO₂ storage.

Team SimCCS

• Data, tools & science development for CO₂ capture, transport, & storage.

