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) Collaborators and Background

Los Alamos National Lab (project lead)
* P.Johnson (PI), C. Donahue (Co-Pi), M. Remillieux, B. Carey, E. Dauson, L. Beardslee, L. Frash, S. Boyce, and E.
Rougier
» Acoustics (nonlinearity, time reversal, signals from noise); machine learning; i ]
wellbore integrity; lab-scale experiments; project integration; DAS Locahzed

Lawrence Berkeley National Lab . . ””
Distribute damage
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+ S. Nakagawa

» Acoustics; fiber optics
Clemson University

L. Murdoch, L. Hua, H. Xiao, S. DeWolf

» Fiber optics, geomechanics, acoustics
Chevron, ETC

*+ H. Goodman

* Field application needs

Background to Approach

Our previous work has demonstrated:
» Nonlinear acoustical methods probe mechanical damage in complex earth materials;
« Acoustic time-reversal methods used to focus energy (including within earth materials);
» Machine-learning algorithms can extract small seismo-acoustic signatures from noisy backgrounds;
» Fiber optic sensors can be used to monitor strain at high resolution;

« Microwave photonics can measure distributed strain with optical fiber using non-proprietary
methods.




Project Overview
Goals and Objectives

Goals and Objective: Development of an autonomous system that
can be deployed in wells for unattended long-term (e.g., decades)
to monitor both wellbore integrity and stress changes near
wellbore

* Need: affordable, robust, autonomous system for monitoring wellbore
integrity, especially post closure

* Need: detect leakage signatures for long term CO, monitoring

Innovation: Combination of:

(i) Fiber optic sensing to track near-borehole anomalous stress evolution
associated with damage and to detect acoustic signals

(i) Supervised machine learning to extract passive seismo-acoustic
signals for long term monitoring of associated with leakage;

(i) Active acoustics using embedded sensors and Time Reverse Nonlinear
Elastic Wave Spectroscopy (TR-NEWS) to probe for localized damage



Distributed
Strain/stress fiber optic

H Approach

A. Listen for leakage in near-wellbore region using passive acoustic
methods (specific objective 1; task 3)

.. Identify/discover signatures

ii. Develop machine-learning algorithms to extract signature(s) autonomously,
including the extraction of signal from noise

B. Interogate and locate damage regions with time-reversal nonlinear
elastic wave spectroscopy (TR-NEWS)

i. Demonstrate the ability to focus acoustic energy at specific points along a
wellbore using time reversal (specific objective 2; task 4)

z

% ii. Evaluate ability of embedded acoustic sensors to detect signature(s)
h

ii. ldentify/discover nonlinear elastic signatures associated with damage zones
and leakage pathways (specific objective 3; task 5)

fluid flow damage
C. Monitor strain/stress evolution in near-wellbore region using fiber
Time reversal optic sensing
fOCU_S for i. Demonstrate the ability of an embedded fiber optic cable to detect strain tied
nonlinear to loss of integrity in the near-wellbore region (specific objective 4; task 6)

interrogation of ii. Evaluate the feasibility of measuring distributed strain and acoustic spectra
cracks using non-proprietary fiber optic techniques



Half Pipe to Inspect and ground-truth

Damage

» Create local damage

« Use Time Reversal to look for local signs
of nonlinearity

Nonlinearity: Along Pipe

Damage Cycle
[e)]
Nonlinearity
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DAS
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Product Specifications
Sensing Capabilities

Range: 0 - 40km

Frequency Range: 0.01Hz - 50kHz
Spatial Resolution: down to 1m*




Monitoring Acoustic Signals
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Time Reversal Simulations
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Accomplishments to Date

— Performed TR in open hole and exposed cased half-
pipe with laser viorometer and fiber optics

— Simulated TR in open hole and cased hole

— Tested two optical fiber systems with TR on large
sandstone block and in half-pipe

— Acquired IDAS system

— Gathered data and applying Machine Learning to
acoustic signal generated by flow through a cracked
rock in pressure vessel

— Simulation of TR-NEWS system show many sources
are needed

10



| essons Learned

— DAS shows promise

— Need sufficient reflectors and/or sources in open hole for
time reversal

— Difficult to create damage for evaluation in case wellbore

— Anticipate pieces will be in place at end of project to
move to prototype development
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Synergy Opportunities

Leak Detection over large areas — Youzuo Lin. Some signatures discovered and
algorithms developed in this effort may be relevant to our project—lessons learned will
be shared.

Monitoring Reservoir Displacements — Paul Johnson. Particularly looking at the
State of Stress.

Monitoring Seismicity — Ting Chen

Ground Base Nuclear Explosion Monitoring — Michael Begnaud. Interest in applying
DAS

Global Security — Emily Schulze-Fellenz. Interest in applying DAS.
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Project Summary

Key Findings:
— TR NEWS computer simulations show the procedure in full

— The TR Experiments work reasonably in a laboratory borehole and
will require optimization

— IDAS System has been delivered, developments in iDAS show a low
cost method for leakage monitoring

Next Steps:

— Advance ‘leak listening’ studies applying machine learning.
Laboratory and simulation.

— Planning field test using iDAS
— Continue simulations of listening and state of stress
— Publish tests of TR NEWS
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Benefit to the Program

GOAL: development of autonomous system that can be deployed in wells for long-
term (e.g., decades), unattended monitoring both wellbore integrity and associated
stress changes (Topic Area 2).

If successful in achieving the overarching R&D goal, the outcome would be a cost-
effective option (hardware and software) for long-term autonomous monitoring of
wells.

This technology would have broad application in subsurface operations, where
maintaining and monitoring wellbore integrity is central to reservoir management
strategies (including geothermal operations, oil/gas operations, injection operations).
However, the largest benefit to national subsurface energy interest likely lies in post-
closure monitoring of wellbore integrity, as needed for CO2 storage operations. This
system would be a cost-effective autonomous option to provide the data necessary to
ensure that wellbore integrity is being maintained, targeting a central need in any
CO2 storage.
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Project Overview
Goals and Objectives

Goals and Objective: Development of an autonomous system that can
be deployed in wells for unattended long-term (e.g., decades) to
monitor both wellbore integrity and stress changes around the borehole

* Need: affordable, robust, autonomous system for monitoring wellbore
integrity, especially post closure

* Need: detect leakage signatures for long term CO, monitoring

Innovation: Combination of;

(i) Machine learning to extract passive seismo-acoustic signals for long
term monitoring of associated with leakage;

(i) Active acoustics using embedded sensors and Time Reverse Nonlinear
Elastic Wave Spectroscopy (TR-NEWS) to probe for localized damage

(ii) Fiber optic sensing to track near-borehole anomalous stress evolution
associated with damage
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Organization Chart

LANL: overall lead
LANL and LBL: TR NEWS simulation and experiment

LANL: DAS and Machine learning applied to leak signals,
experiment and simulation

Clemson: consultation on Fiber Optics
Chevron: consultation on R and D, and application
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Gantt Chart

(project initiated late Q1 FY18)

Table 1. Timeline for project by task and project year (PY), with two go/no-go (G/NG) decision points.

Task

Task Description

| PY1 PY2

PY3

1.0

ITechnical Project
Management(200)

Product

Dependencies

[ Quarterly reports;
other sponsor requests

2.0 Literature Review & [] Briefing with detail to
[Technology Evaluation (250) assess 1 go/no-go
3.0 Detect Fluid Flow (250) [] Report documentinglab [“Go” at 1% go/no-go
results on detecting small
signals
4.0 Use TR to Focus Energy " Report documenting lab [‘Go” at 1 go/no-go
(200) results on TR focusing of
acoustic energy
5.0 Detect nonlinear Properties [ Final report summarizing |Successful
(750+ lab and field results and completion of 4.0
data
5.1 Lab-scale Experiments ( [ Initial report on lab results [Successful
as needed to assess 2™ completion of 4.0
go/no-go
5.2 Field-scale Experiments [l Data documenting field  |“Go” at 2™ go/no-go
performance
6.0 Measure Stress Field [ Final report summarizing
lab and field results and
data
6.1 Lab-scale Experiments [ Initial report on lab results
as needed to assess 2™
go/no-go
6.2 Field-scale Experiments [] Data documenting field  |“Go” at 2™ go/no-go
performance
7.0 Re-assess design criteria [] Report assessing feasibility

of commercial system
based system, along with a
development pathway
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