Monitoring of Geological CO₂ Sequestration Using Isotopes & PFTs

Project Number FEAA-045

David E. Graham¹, Joachim Moortgat² DR Cole², SM Pfiffner³, TJ Phelps³

U.S. Department of Energy

2

National Energy Technology Laboratory Carbon Storage Project Review Meeting 2020 Virtual Review Webinar

September 10, 2020

Project Overview

Provide methods to interrogate the subsurface that will allow direct improvement of CO₂ storage.

Tasks

- Numerical Modeling of Reactive Transport at Cranfield and Other CCS Site(s) to
 - Better interpret field data
 - Predict long-term evolution of fluids & formation
 - Apply lessons learned to other projects
- 2. Assess efficiency of PFT analysis using capillary adsorption tubes in a hydrocarbon-rich matrix

Task 1 Objective

- Constrain structural, solubility, and chemical trapping mechanisms that guarantee storage permanence, through novel subsurface signals & modeling.
 - Non-trivial migration patterns in heterogeneous formations
 - Diffusion driven convection and cross-flow into low-perm. facies
 - Chemically driven mineralization of CO_2 and formation alterations

 Iteratively coupled workflow of field data and modeling

Modeling Tools

- Unique combination of capabilities in **Osures**:
 - Higher-order finite element (FE) methods for flow and transport: allow unstructured grids, tensor permeability, discrete fractures, strong heterogeneity
 - Low numerical dispersion (e.g., resolves small-scale onset of instabilities)
 - Cubic-plus-association (CPA) equation of state (non-ideal) phase behavior modeling of water, CO₂, hydrocarbons, tracers (capture, e.g., competitive dissolution and brine compressibility)
 - Fickian diffusion with self-consistent composition + T + p -dependent full matrix of diffusion coefficients for multicomponent multiphase fluids
 - Capillary-driven flow with composition + p -dependent surface tension
 - New Reactive transport by coupling to iPHREEQC geochemistry (2019-2020) and PhreeqcRM (2020-2021), which is faster / parallelizable.

Prior Accomplishments

Technical Status

- 2020: Coupled **Osures**, higher-order FE simulator for 3D multiphase multicomponent compositional (Equation of Statebased) convection, diffusion, capillarity, gravity, dispersion, fractures to **iPHREEQC** and **PhreeqcRM** for geochemistry.
- PHREEQC (USGS) is open source, well validated, offers interface to other flow simulators (only 1D transport itself).

6

Currently, full Osures capabilities and 1-phase chemistry fully validated¹. Multiphase in initial testing, completed later in FY2021.

A Higher-Order Finite Element Reactive Transport 1. SCIENTIFIC Model for Unstructured and Fractured Grids

Joachim Moortgat^{1,*}, Mengnan Li¹, Mohammad Amin Amooie², and Di Zhu³

¹School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA ²Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Occidental Petroleum Corporation, Houston, TX 77046, USA moortgat.1@osu.edu

Benchmarking

 Electrochemical migration (Nernst-Planck diffusion¹) of Na⁺, Cl⁻, H⁺, NO₃⁻. Modeled with CrunchFlow, MIN3P, PHREEQC (symbols), Osures (solid).

 Tracer isotope (²²Na⁺ vs Na⁺) diffusion due to charge effects¹ PHREEQC (symbols), **Osures** (solid) steady-state ²²Na⁺ concentration

¹Rasouli, Steefel, Mayer, Rolle; Benchmarks for multicomponent diffusion and electrochemical migration. Comput Geosci (2015)

Benchmarking

3. Rock-fluid cation exchange column (Ex. 11 PHREEQC manual)

CaCl₂ Na⁺ K⁺ NO₃⁻ ? Ca-Cl injected into Na-K-NO₃ solution. Ca²⁺ exchanges with Na⁺ and K⁺

Higher-Order Methods

- Mixed (Hybrid) FE method for pressure & velocity field
- Multilinear Discontinuous
 Galerkin FE for reactive transport
- Unstructured, relatively coarse, 3D grids
- Accurate velocities and low numerical dispersion,

• which translates to...:

Higher-Order Methods

- Three orders of magnitude improvement in computational efficiency!
- More from good parallel scaling of PhreeqcRM.

Unstructured Grids

- 2D: Quads & Triangles, 3D: Tetra- & Hexahedra
- Allows gridding of, e.g., cores and complex geological formations.
- Validated for both aqueous equilibrium and rock-fluid reactions on all 2D and 3D grid types.

Discrete Fractures

FE discrete fracture example with convection, diffusion, and rock-fluid cation exchange reactions.

Preliminary Two-Phase Testing

New synergistic collaboration developed with Battelle to model CO₂ transport in challenging Chester 16 reef system (MRCSP)

• First milestone: develop alternative static model

- Industry-standard is logically Cartesian corner-point grids.
- For complex geometry, like domes, many dead and pinched cells.
- Can truly unstructured, e.g. tetrahedral, grids offer advantages?

Permeability - i Cross Sections

Permeability - j Cross Sections

 Preliminary tetrahedral static model for Chester 16 reported in FY2020Q1 report.

Permeability - j Cross Sections

 Preliminary modeling of CO₂ injection indicates necessity for further improvements in grid refinement and computational efficiency.

Lessons Learned

- Critical uncertainties in modeling/predicting two-phase migration of supercritical CO₂ into brine-saturated formation:
 - Subsurface heterogeneity,
 - Relative permeability & capillary pressure relations: especially facies-dependence.
- Convective mixing of dissolved CO₂ relatively insensitive to multimodal facies heterogeneity when porosity and permeability are correlated.
 Simple scaling laws in terms of formation/fluid properties apply broadly.
- Rock-fluid reactions likely modest on short time-scales but may affect long-term storage. Predictions require costly (parallelized) numerical modeling & further research.

Project Summary (Task 1)

- Completed:
 - Modeling of CO_2 , brine, and various tracers at Cranfield.
 - Fundamental analyses of solubility trapping (mixing and spreading of dissolved CO₂).
 - Initial implementation and benchmarking of coupled flow and reactive transport with Osures+iPhreeqc/PhreeqcRM
- Ongoing & Future work:
 - Investigation of *multiphase* flow and *reactive* transport at Cranfield
 - Technology improvements (specifically parallelization / HCP)
 - Modeling of independent Chester 16 field site to stress-test modeling tools.

Task 2 Objective

Develop methods to improve the analysis of perfluorocarbons in a hydrocarbon-rich matrix, found in many EOR and EGR monitoring well samples.

Conservative Perfluorocarbon Tracers (PFTs)

- Non-reactive, non-toxic, inexpensive and stable to 500°C
- Several PFTs can be quantified in a single analysis
- Detectable at pg-fg levels (fmoles)
- Different PFT "suites" (PMCP, PMCH, PECH, PDCH, PTCH), and SF₆, assess multiple breakthroughs → flow regime indicator

Thermal Desorption-Gas Chromatography with Electron Capture Detection

Prior Accomplishments

Increased PFT breakthrough to downstream tube in the presence of hydrocarbons

Alternative Thermal Desorption Tubes

Prior Accomplishments

Tubes containing four sorbents were loaded with PFT standards in CO₂ saturated with diesel and analyzed using TDS with GC-ECD analysis. The mixed bed tube contains Tenax TA, Carboxen 1000 and Carbosieve S-III.

New Sorbents Reduced Breakthrough

Alternative sorbents trapped more PFTs than Ambersorb with CO₂ & diesel volatiles

Water Does Not Inhibit PFT sorption

Water did not have a significant effect on PFT recovery from Carboxen 569 or Ambersorb . Unexpected increase in the mixed-bed sorbent's sensitivity to PMCP, PMCH and PECH (P_{adj} < 0.001 for each)

Improved Sensitivity and LOD with Carboxen 569 Sorbent Tubes

PFT	Ambersorb XE-347	Carboxen 569 LOD
	LOD (pmoles/L)	LOD (pmoles/L)
PMCP	5.8	0.5
РМСН	1.6	0.1
PECH	0.7	0.1
PTCH	1.3	0.3

Summary (Task 2)

- Hydrocarbons substantially reduce the efficiency of perfluorocarbon adsorption to AMBERSORB[™].
- The most volatile PFT (PMCP) may not be adsorbed in the presence of HCs using some sampling tubes.
- Larger bed volumes of high specific surface area carbon molecular sieve sorbents or mixed beds significantly and substantially improves detection.
- Carboxen 569 is a recommended replacement for AMBERSORB in sorbent tubes for PFT sampling.
- PFT response factors (sensitivities) vary significantly, but LOD is similar and limited by background contamination.

Synergies

- Established collaborative simulation opportunities with MRCSP regarding challenging reef systems.
- Open to other partnerships, incl. future large-scale projects.
- Addressing priority research directions:
 - PRD S-1: Advancing Multiphysics and Multiscale Fluid Flow to Achieve Gton/yr Capacity
 - PRD S-2: Understanding Dynamic Pressure Limits for Gigatonne-scale CO₂ Injection
 - PRD S-6: Improving Characterization of Fault and Fracture Systems
- Collaborative PFT sorbent testing in hydrocarbon-rich matrices. Planned GC-MS experiments with NETL RIC.
- Sharing best practices for tracer analysis
 - Potential applications for CCUS Research Priority areas: Locating, Evaluating, and Remediating Existing and Abandoned Wells & Wellbore leakage

APPENDICES

Organization Chart

Gantt Chart

	Milestone Description*												Planned Start	Planned End	Actual Start	Actual End	
Task		Fiscal Year 2019			Fiscal Year 2020			Fiscal Year 2021									
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Date	Date	Date	Date
2.1	Survey field test opportunities for enhanced PFT sampling technology													9/18	12/18	9/18	12/18
2.1	Thermal desorption system installed on ORNL's gas chromatography system													2/19	3/19	2/19	3/19
2.1	Sorbent selected for PFT-hydrocarbon experiments													3/19	6/19		7/19
1.1	Initial transport modeling of aqueous equilibrium reactions with Osures+iPhreeqc													3/19	9/19	3/19	9/19
1.2	Data sharing planned with partner institution(s) for future modeling of a CCS project independent of the Cranfield DAS													3/19	12/19		12/19
2.1	Validation of PFT sorbent sampling method in hydrocarbon matrices													7/19	12/19		3/20
2.1	Best practices identified for PFT sampling in hydrocarbon-rich environments													9/19	12/20		
1.2	Static model developed for a modeling benchmark study of an independent CSS project													7/19	6/20		8/20
1.1	First demonstrations of reactive transport modeling of the multiphase brine-CO2-rock system using higher-order accurate methods													7/19	12/20		
1.2	Modeling of CO2-brine flow and transport for a field site different from Cranfield DAS													1/20	3/21		
1.1	Final model of geochemistry and reactive transport at Cranfield													7/20	6/21		
1.1	Complete CO2-brine-rock geochemistry and reactive transport incorporated into CSS simulations													10/20	9/21		
3	Final report on Monitoring of Geological CO2 Sequestration Using Isotopes and Perfluorocarbon Tracers													1/20	9/21		