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Background: geologic carbon storage (GCS)

= 70% energy in US is from fossil fuel.

Geological Storage Options for CO, e— Droduced oil o gas
1 Depleted oil and gas reservoirs Injected CO,
2 Use of CO, in enhanced oil recovery Stored CO
1 3 Deep unused saline water-saturated reservoir rocks 2
= Demands immense sto rage volume S e
5 Use of CO, in enhanced coal bed methane recovery
6 g =

Other suggested options (basalts, oil shales, cavities) e /&=
= Local accessibility is a key g

= Caprock secures integrity
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_ Seismic survey
" results showing
\ caprock
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Why studying caprock fracturing
Conventional strategy: Injecting below the fracturing
pressure to prevent fracturing

= Hydraulic fracturing has been suspected.
— Evidence showed the storage complex was not comprised.

= Need to re-assess the role of hydraulic fracturing in GCS.
oG 5 c Whi l., 2014
= |f CO, can be injected through a vertically contained (e et 2014
fracture, reservoirs of marginal permeability will be
s i @AGUPUBLICATIONS
econ0m|ca”y Vlable. Journal of Geophysical Research: Solid Earth
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RESEARCN ARTICLE  The Influence of Hydraulic Fracturing
o on Carbon Storage Performance
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Project Overview

= To assess short- and long-term behavior of hydraulic fractures in
geomechanically protected caprock.
— Goal is to increase injectivity in low-permeability reservoirs and
ensure storage security.

Reservoir

— Develop mechanically rigorous tools to evaluate various fracturing
scenarios.

— In essence, we bring rigorous fracture mechanics, geomechanics, and
multi-phase flow together to evaluate caprock fracturing.

= Funded by DOE/NETL.

= Performance dates: July 1, 2018 to September 30, 2020

Fracture-

il -
Virtual reservoir
source | interface
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Tasks and technical approach
= Tasks:

— Develop and validate a CO,-saline two-phase hydraulic
fracture model in GEOS.

— Study the sustainability of hydraulic fracture within the
reservoir rock.

— Study fracturing mechanisms and processes unique to
CO, injection.

— Study fracture containment mechanisms.

= Technical approach:
— High fidelity modeling utilizing HPC.
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Is hydraulic fracture in reservoir rock poromechanically sustainable?

= A hydraulic fracture tends to close under constant fluid pressure
— (Detournay and Cheng, 1991; ...)

= Can we sustain a reservoir hydraulic fracture with a pressure safe for
caprock?

Unconventional oil and gas: Carbon storage:

= Very low reservoir k = Much higher reservoir k

Fluid Flow

= Can use high viscosity fluid = Has to inject CO,

= Relatively short injection = Long injection
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Fracture’s poroelastic sustainability: baseline results
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Fracture’s poroelastic 1 hour 5 days 1 year
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Reservoir total stress increase due to poromechanical effects
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Framework of the 3D model:

= Critical processes as revealed by 2D model R

— Fluid/heat transport
z=-2000

— Poroelasticity 2030

Shmm

— Poisson’s effect

Injection point

— Thermal contraction

— Fracturing through stress barrier

= Take advantage of existing GEOS modules:
— CO,-saline flow module

— Hydraulic fracturing module ~60.

-55.

- 50.

= A key revelation allowing mitigating numerical challenges: [“'

40.
35.

— In leakoff-dominated fracturing regime, only minimal error is
induced if mass conservation fracture is relaxed.
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Model verification: leakoff-dominated fracture propagation
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Model setup
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Model results: key processes

= Rapid increase of injection pressure due

to poroelasticity (total stress increase)

1 month 1 year 3 years
= Early: caprock fractures leads .

= Later: caprock fracture follows
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Model results: key processes

= Rapid increase of injection pressure due
to poroelasticity (total stress increase)
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Model results: the effects of caprock in situ stress
= High caprock stress limits fracture height growth
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Model results: the effects of caprock temperature
(@) Tim=65°C (b) Tine=70°C
= High caprock temperature

limits fracture height growth
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Technical status and impact

= Success completion of this two-year effort.
— Paper on poroelastici sustainability in minor revision.
— Paper on 3D model and containment mechanism will I
be submitted before October. ' am
— Model available in GEOS.

= The results could motivate a fundamental shift in | Ve siezm
exploration/design focuses:
. c Layering structure of typical
— Fracture growth is affected by many previously T =
unappreciated factors o TNy

— Looking for systems with caprock protected by certain
inherent geomechanical features.

— Particularly when only marginal k reservoir is
available.

= Addresses several priority research directions

— PRD S-6 (fault and fracture systems), S-3 (control of near-well environment), S-2 (dynamic
pressure limit), S-1 (Multiphysics and multiscale fluid flow)



Lesson learned and synergy opportunities

Fracturing and fracture flow in GCS context is still poorly understood.

When we incorporate more physics, new understanding emerges.
— The process should make sense in hindsight, but would be hard to think of without the aid of
high-fidelity models.

Synergistic with
— Ongoing studies of stress measurement, fault activation
— Fracturing research in geothermal and oil-gas applications.

Addresses several priority research directions

— PRD S-6: Improving Characterization of Fault and Fracture Systems

— PRD S-3: Optimizing Injection of CO2 by Control of the Near-Well Environment

— PRD S-2: Understanding Dynamic Pressure Limits for Gigatonne-scale CO2 Injection

— PRD S-1: Advancing Multiphysics and Multiscale Fluid Flow to Achieve Gigatonne/year Capacity

I
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