EERC. UN IVERSITYOF.

North Dakota CarbonSAFE Phase III: Site Characterization and Permitting DE-FE0031889

DOE NETL 2020 Integrated Project Review Meeting – CCUS Integrated Projects August 17–19, 2020

> Wesley Peck Assistant Director of Subsurface Strategies

© 2020 University of North Dakota Energy & Environmental Research Center.

Project Overview

- Perform commercial-scale site characterization and permitting of two sites for the geologic storage of over 3 million metric tons (Mt) of CO₂ per year.
- Minnkota Power Cooperative, the North Dakota Industrial Commission's Lignite Research Program, BNI Energy, Computer Modelling Group (CMG), and Schlumberger.

	Federal	Cost Share	Total	Performance Dates
Budget Period 1	\$14,832,334	\$6,972,533	\$21,804,867	9/1/2020 - 8/31/2022
Budget Period 2	\$2,141,689	\$986,267	\$3,127,956	9/1/2022 - 8/31/2022
Total	\$16,974,023	\$7,958,800	\$24,932,823	

A Touchstone Energy® Cooperative 🔨

Project Tundra

North Dakota CarbonSAFE Phase III: Site Characterization and Permitting

- Identify and characterize two commercialscale CO₂ stacked storage sites.
- Apply for and obtain approval of multiple North Dakota CO₂ Storage Facility Permits.
- Prepare an Environmental Information Volume (EIV) to assess any NEPA-related issues for the identified capture, transport, and storage sites.

Critical Challenges. Practical Solutions.

EERC UND NORTH DAKOTA.

Site Selection and Characterization

Phase II Accomplishments

- Drilled, cored, logged, and plugged the two stratigraphic test wells.
- Completed laboratory testing of the new core.
- Reprocessed legacy seismic data.
- Built geologic models and reservoir simulation models.
- Ran multiple scenarios of injection, including stack storage options.
- Seismic source test on reclaimed mine land.

Technical Approach/Project Scope

	Major Proposed Characterization Activities									
Major NDIC Permitting Requirements										
Determine Plume Extent	X	X	X	X	X	X	X			
Determine Pore Space Amalgamation	х	х	х		х	x	X			
Geologic Properties of Injection and Confining Zones	x	х	х	x						
Regional Faulting Assessment	X						X			
Potential for Seismic Activity			X		X		X			
Geologic Maps and Cross Sections		х			x		x		x	
Geomechanics of Confining Zones(s)		x	х	х	х					
Identify and Characterize Secondary Confining Zones		X	x		x		x			
Determine Area of Review		X	X	X	X	X	Х	X	X	
Baseline Geochemical Data	X			X				X	Х	
Baseline Water and Soil Data				X				X	X	

Major Milestones for Phase III

Milestone	Target Date
Submit Permit to Drill	Q3 2020
Geophysical Data Acquisition Complete	Q4 2020
Injection Simulations Initiated	Q4 2020
Area of Review Determined	Q1 2021
Fox Hills Well Installation Complete	Q2 2021
Storage Facility Permit Development Complete	Q2 2021
NRAP Supplemental Testing Complete	Q3 2022
Machine Learning Algorithm Testing and Evaluation	Q4 2022

EERC. | UND NORTH DAKOTA.

Regional Integration

Recent Accomplishments

Photo courtesy of John Oleksik, EERC

- J-LOC1 well drilled into the Precambrian basement (10,470 feet).
- 1344 feet of core from three reservoir/seal intervals.
- 6-mi² seismic survey.
- Well pad for second well is built.
- Host site access is secured.

ND Class VI Program Components

- Storage facility permit
 - Project-specific template
- Permit to drill an injection well
- Permit to inject
- Certificate of project completion

• Accessibility!

EERC. | UND NORTH DAKOTA.

Synergy Opportunities

- We are not working in a vacuum. Other CCUS opportunities in the region are developing.
- FEED study at MRY Station.
- PCOR Partnership Initiative
- Contributing to public acceptance of CCUS projects.
- Building a foundation for how states can efficiently permit and oversee commercial-scale CO₂ storage projects.

Critical Challenges. Practical Solutions.

Summary and Future Plans

- Engaged partners
- Good geology
- Stacked storage
- Site access established
- Minimal CO₂ transport distances
- FEED study under way
- Class VI primacy
- New core in-house ... analysis under way

- Start the project in earnest
- Core analysis
- Model refinement
- Start permit development
- Start the geophysical survey
- Get the second well (J-ROC1) under way
- CO₂ injection tests in the J-LOC1 well

EERC | UND NORTH DAKOTA

Wesley Peck Assistant Director of Subsurface Strategies wpeck@undeerc.org 701.777.5195 (phone)

Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org 701.777.5000 (phone) 701.777.5181 (fax)

Appendix

Organization Chart

EERC. | UND NORTH DAKOTA.

Gantt Chart

