PHASE II: (Update)

Large Pilot Testing of Linde-BASF Advanced Post-Combustion CO₂ Capture Technology at a Coal-Fired Power Plant (FE-0031581)

Kevin C OBrien, PhD Director, Illinois Sustainable Technology Center Director, Illinois State Water Survey Prairie Research Institute University of Illinois at Urbana-Champaign

DOE/NETL 2020 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting Pittsburgh, PA / Aug. 17-19, 2020

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PROJECT OVERVIEW

Funding: \$3,736,684 DOE: \$2,988,359 20% Cost Share: \$748,325 Work Period: Sept. 1, 2019 – Jan. 15, 2020 (revised)

City Water, Light and Power (CWLP) Springfield, IL

PROJECT OBJECTIVES:

Overall: Design, construct, and operate a 10 MWe capture system based on the Linde / BASF advanced amine-based, post-combustion carbon dioxide (CO_2) capture technology at CWLP Dallman Unit 4, Springfield, IL.

Phase II: Front End Engineering Design (FEED) study along with obtaining necessary regulatory approvals and funds for Build / Operate in Phase III.

Large Pilot Team Management Structure

Well-defined roles based on relevant capabilities

Prairie Research Institute

IILLINOIS

Capture Technology Evaluated up to 1.5 MWe

TECHNICAL BACKGROUND

Solvent and System Designed for Improved Performance

- BASF

Linde

Reduced capital costs / energy costs

- Optimized BASF OASE[®] blue solvent
- Efficient CO₂ capture from low-pressure sources
- Longer solvent stability
- Lower solvent
 circulation rate

Notable Linde process improvements

(C, E) Dry bed water wash design to minimize solvent losses

(G) Stripper regeneration at 3.4 bars reducing CO₂ compressor cost and power

consumption

(I) Advanced Stripper Interstage Heater to reduce regenerator steam consumption.

ILLINOIS Prairie Research Institute

Attractive Techno-Economics for Linde / BASF Process

Baseline case: DOE-NETL supercritical PC power plants

Parameter	DOE-NETL Case B12A	DOE-NETL Case B12B	Linde-BASF LB1	Linde-BASF SIH	Linde-BASF WHR
Description	No CO ₂ capture	90% CO ₂ Capture w/ Cansolv PCC process	90% CO₂ Capture w/ OASE® blue	90% CO ₂ Capture w/ OASE® blue and SIH	90% CO ₂ Capture w/ OASE® blue, SIH, and WHR
Net Power Output (MWe)	550	550	550	550	550
Gross Power Output (MWe)	580	642	630.4	629.3	626.3
Coal flow rate (tonne/hr)	179.2	224.8	221.9	218.5	210
Net HHV plant efficiency (%)	40.70%	32.50%	3297.88%	33.40%	34.73%
Total Overnight Cost (\$2011) (\$/MM)	\$1,379	\$2,384	\$1,970	\$1,950	\$1,921
Cost of CO ₂ captured with	N/A	\$68.00	\$53.58	\$52.71	\$51.31
Cost of CO ₂ captured without T&S (\$/MT)*	N/A	\$58.00	\$43.58	\$42.71	\$41.31
COE (ې/۱۹۷۹) witr T&S*	\$82.30	\$142.80	\$127.97	\$126.50	123.63
PCC specific reboiler duty (MJ/kg CO ₂)	N/A	2.48	2.6	2.3	1.5

* T&S: Transport and Storage

IILLINOIS

City Water, Light and Power (CWLP)

Water and power supplier for City of Springfield

Phase II

PROJECT MANAGEMENT

ILLINOIS Prairie Research Institute

Project Tasks

Designed for smooth transition to Phase III

Task #	Task
1.0	Project Management and Planning
2.0	Front-End Engineering Design (FEED)
3.0	NEPA / Permitting at Host Site
4.0	Team and Cost Share Commitments for Phase III
5.0	Updated Techno-Economic Analysis (TEA)

Milestones for Phase II

Budget Period	Task Number	Description	Planned Completion Date	Actual Completion Date	Verification Method
1	1	Updated Project Management Plan	9/30/2019	9/30/2019	Project Management Plan file
1	1	Phase II Kickoff Meeting	11/30/2019	10/4/2019	Presentationfile
1	2	Finalized FEED study	12/15/2020*		Quarterly RPPR file
1	2.2	Completion of Basic Engineering Design Package, including HAZOP study report	3/3/2020	3/3/2020	Quarterly RPPR file
1	3	NEPA and permitting documentation complete	10/1/2020*		Quarterly RPPR file
1	4	Phase III cost share commitments complete	1/15/2021*		Quarterly RPPR file
1	5	Updated TEA	12/31/2020*		Quarterly RPPR file
1	1	Phase II Topical Report Completed	1/15/2021*		Topical Report File
1	1	Quarterly RPPR report	Each quarter		RPPR files

*NOTE: Milestone dates have been adjusted based on NETL/DOE communication received in March 2020 changing date for receipt of final Phase II Topical Report.

FY20 Transformational Coal Pilots Peer Review February 4-6, 2020

- **Technical Feedback:** Suggested means to reduce construction risks
- **Managerial Feedback**: Suggested constructability review and value engineering
- *Financial Feedback:* Suggested planning on how to handle cost overruns
- **Change in timeline for all projects**: shift Phase III proposal due date of January 15, 2021

Project team felt input was very useful from peer review.

Probability Impact Matrix : Phase II (August 2019)

ILLINOIS Prairie Research Institute

Probability Impact Matrix : Phase II (August 2020)

ILLINOIS Prairie Research Institute

Phase II

RESULTS FROM HAZOP & BASIC DESIGN/ENGINEERING

HAZOP Review – Recommendations & Responses

Recommendation	Mitigation and Response Strategy	
Check safety measures upstream	Host site confirmed there is no foreseen likelihood of a negative pressure situation, the controls will be designed to shut down the pilot plant and dampers in the event of an upset	
Check maximum possible pressure from boundary limit	Confirmed maximum pressure that could occur at the battery limit from the wet ESP if ID fans are on with no recycle pumps	
Heat tracing required for low points in OSBL flue gas lines	Project will make every attempt to design OSBL flue gas lines at a constant slope with no low points – if low points must exist, they will include heat traced drain lines	
Check maximum possible temperature at boundary limit	Confirmed maximum design temperature that could occur at the battery limit from the wet ESP and declared PPE requirements	
Check maximum allowable amine emissions per local regulations	Confirmed maximum permissible amine emissions (categorized as VOC/VOM) based on Dallman 4 air permit limit and emission test results	

Basic Engineering

Completed deliverables

- Design basis
- Process design
- Equipment list
- Process and mechanical data sheets
- P&IDs
- Logic diagrams
- Basic operating manual and analytical instructions
- Safety requirements
- Material specifications
- 3D model of site plan

BASE

Phase II

NEPA & PERMITTING

ILLINOIS Prairie Research Institute

<u>NEPA</u>

A NEPA working team was formed consisting of the NEPA contractor, ISTC, Linde, CWLP, and NETL/DOE

- The public comment period yielded no comments that required a response
- NETL and DOE approved the Final EA and FONSI

PERMITTING

A working team for permitting issues was formed consisting of representatives from ISTC, CWLP, and the Illinois Environmental Protection Agency (IEPA)

- **Stormwater** a construction permit will be submitted by project contractor; stormwater from project area covered by site NDPES permit
- Air emissions emission values have been calculated; construction/operating permit will be managed as a "Modification to the Facility"
- Hazardous waste a permit is not required; solvent contaminated waste will be tested to determine hazardous status and dispose appropriately
- Wastewater 3rd party wastewater assessment complete; treatment design and costing initiated

Phase II

ACTIVE TASKS

DETAILED ENGINEERING

ISBL – Linde Engineering North America (LENA) issued definition package and is finalizing technical deliverables for internal approval process

OSBL – Soil borings performed, design complete and detailed estimates being finalized

OPERATING PLAN

Linde is developing an operating plan and budget to run the pilot plant

Acknowledgements

Organization	Name
Andrew Jones	National Energy Technology Laboratory / US Department of Energy
PJ Becker, Deborah Williams	City, Water, Light & Power (CWLP)
Yongqi Lu, Vinod Patel, Jim Dexter, Stephanie Brownstein, Chris Lehmann, Margaret Morrison	Prairie Research Institute / University of Illinois
Krish Krishnamurthy, Makini Byron, Devin Bostick, Tom Rayhill, Matthew Parker	Linde
John Nichols	BASF
David Guth	Affiliated Engineers Inc (AEI)
Greg Larson	Affiliated Construction Services (ACS)

This project is supported by the U.S. Department of Energy / National Energy Technology Laboratory (DOE/NETL) through Cooperative Agreement No. DE-FE0031581

