Full-Scale FEED Study For a 816 MWe Capture Plant at the Prairie State Generating Company Using Mitsubishi Heavy Industries of America Technology

Kevin C OBrien, PhD Director, Illinois Sustainable Technology Center Director, Illinois State Water Survey Prairie Research Institute University of Illinois at Urbana-Champaign

DOE/NETL 2020 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting Pittsburgh, PA / August 17, 2020

ILLINOIS Prairie Research Institute PRAIRIE STATE Generating Company

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PRAIRIE STATE Generating Company

PROJECT OBJECTIVES:

Overall: Perform a Front-End Engineering Design (FEED) study for the retrofit of the Prairie State Generation Company's (PSGC) coal-fired power plant with post-combustion carbon capture. The FEED study will outline the use of Mitsubishi Heavy Industries' (MHI) Advanced KM CDR Process[™] to retrofit one of PSGC's two generating units (approximately 816 MWe). The FEED study will enable PSGC to move forward with actual build/operate in future work.

PRAIRIE STATE Generating Company

Project Team Management Structure

Well-defined roles based on relevant capabilities

FRONT-END ENGINEERING DESIGN STUDIES FOR CARBON CAPTURE SYSTEMS ON COAL AND NATURAL GAS POWER PLANTS

TECHNICAL BACKGROUND

ILLINOIS Prairie Research Institute PRAIRIE STATE Generating Company

Solvent and System Designed for Improved Performance

Benefits over other capture options

Proven at the 240 MWe level now enhanced with an advanced solvent to produce an even more cost-effective solution for carbon capture. Vital when scaling to an 816 MWe capture plant.

- Automatic load adjustment control
- Amine filtration and purification systems
- Proven tower design for even gas/liquid distribution

ILLINOIS Prairie Research Institute PRAIRIE STATE Generating Company

Project Technology Development 1990 - present

Matured and ready for proposed large scale testing

Kiewit

ILLINOIS Prairie Research Institute PRAIRIE STATE Generating Company

Opportunity to Evaluate Improved Solvent (KS-21)

Many advantages over the solvent used at Petra Nova (KS-1[™])

Parameters Relative to KS-1 [™]	KS-1™	KS-21 [™]
Volatility	100	50-60
Thermal degradation rate	100	30-50
Oxidation rate	100	70
Heat of absorption	100	85

✓ Thermal stability

• Reduce thermal degradation and allow higher stripping T and P, reducing compression work

✓ Oxidative stability

- Potentially more tolerant to impurities
- Reduce amine oxidation and HSS formation rate

✓ Volatility

- Reduce amine loss from emission and cost of water wash system
- Steam consumption savings outweigh cost increases due to higher solvent circulation

ILLINOIS Prairie Research Institute PRAIRIE STATE

Generating Company

Key Activity

TECHNICAL APPROACH / PROJECT SCOPE

ILLINOIS Prairie Research Institute PRAIRIE STATE Generating Company

Project Tasks

Designed to address deliverables and transition to actual build / operate

Task #	Task		
1.0	Project Management and Planning		
2.0	Front-End Engineering Design (FEED) Study		
2.1	Design Basis		
2.2	Preliminary Engineering		
2.3	ISBL Detailed Engineering		
2.4	OSBL Detailed Engineering		
2.5	Studies and Investigations		
2.6	Cost Assessment		
3.0	Regulatory and Permitting at Host Site		
4.0	Final FEED Study Package		

PRAIRIE STATE Generating Company

Project Milestones

Task / Subtask #	Deliverable Title	Due Date
1.0	Project Management Plan Update	3/3/2020
2.0	Design Basis Document Complete	10/30/20
2.0	Report on Utility Requirements	11/19/20
3.0	Preliminary Regulatory and Permitting Pathway	2/18/21
2.0	HAZOP Review	4/30/21
2.0	Impact on Kaskaskia Watershed Document Complete	5/28/21
2.0	Constructability Review Complete	6/30/21
3.0	Regulatory and Permitting Analysis Complete	8/6/2021
2.0	Detailed Engineering Document Complete	11/30/21
4.0	Final Report Submitted	12/31/21
4.0	FEED Study Package Complete	12/31/21

ILLINOIS Prairie Research Institute **PRAIRIE STATE** Generating Company

Risk & Mitigation Strategy

Description of Risk	Probability	Impact	Risk Management Mitigation and Response Strategies
Technical / Scope Risks			
Insufficient water supply	Low	Low	 Studies outlined in SOPO - explore various options to source the cooling and makeup the cooling and makeup water demands of the capture system including supply from host site vs. an external source.
Uncertainty associated with the need of identifying steam and electric sourcing	Low	Low	 Studies outlined in SOPO - explore options to address these issues. Can apply learnings from Petra Nova Project.
Costs / Schedule Risks			
Project cost and/or schedule overruns	Low	High	 Team has previous experience conducting FEED studies on budget and on time
Management / Planning Risks			
Availability of key personnel for project	Low	Medium	Commitments received from partner organizations
Uncertainty of permitting agencies and timelines	Low	Low	 Meetings with relevant agencies for previous projects enabled baseline knowledge for timelines and requirements
EH&S Risks			
Air (amine and CO ₂) emission management	Low	Low	 Leverage experience from Petra Nova Project to meet strict VOC permit requirements Built into ISBL design criteria
Wastewater stream management	Low	Medium	 Studies outlined in SOPO – explore options to address these issues
External Factors Risks			
Negative stakeholder response to FEED study	Low	Low	 Discussions with elected officials have received very positive support
Financial Risks			
Cost share for project not obtained or insufficient	Low	High	 Cost share authorized by host site's Board of Directors Host site is financially stable

ILLINOIS Prairie Research Institute PRAIRIE STATE Generating Company

Key Activity

DESIGN BASIS

ILLINOIS Prairie Research Institute PRAIRIE STATE Generating Company

FEED Design Basis Overview

- Build Location at PSGC
 CC Unit Footprint Concept
- OSBL / ISBL Design Basis
- CO₂ Product Specification
- Flue Gas Measurement
- Flue Gas Desulfurization (FGD) Selection

- Preliminary List of Waste Streams
- Steam and Electric Sourcing Study
- Transportation Study
- Estimate of Water Needs
 - Water Sourcing Options
 - Water Storage

Carbon Capture Unit Site Location

Source: Google Earth

ILLINOIS Prairie Research Institute PRAIRIE STATE Generating Company

Design Basis

OSBL and ISBL Design Basis

Design basis is nearly set, pending results from flue gas stack testing

CO₂ Product Specification

 The Carbon Capture Team worked with the CarbonSAFE team to select an appropriate CO₂ product specification that will allow for sequestration at various potential sites and for other beneficial use

Design Basis

Flue Gas Measurement

• Flue gas composition was analyzed at various operating conditions. The results will be used to determine design parameters

Flue Gas Desulfurization Selection

• Integrated FGD system that uses caustic soda

Preliminary Waste Streams

• Compiling a list of waste streams to work with regulators

Design Basis

Steam and Electric Sourcing Study

- Cogeneration; Steam and Electricity
- Auxiliary Boiler
 - Purchasing electricity from the grid

Transportation Study

 Evaluate the transportation infrastructure around PSGC to assess the routes for shipping materials and determine the maximum dimensions/weight for the equipment that will be shipped to the build site

Considerations Based on Estimate of Water Needs

Water Sourcing Options

- Community water supply reservoirs
- Tributary streams
- Groundwater in the Kaskaskia River valley
- Federal lakes (Lake Shelbyville and Carlyle Lake)

Water Storage

- 25-year Drought conditions
 - 26 days without being able to draw water
 - Reviewing options for mitigating risk

Key Activity

NEXT STEPS

ILLINOIS Prairie Research Institute PRAIRIE STATE Generating Company

Moving Forward

- Preliminary Engineering
- OSBL / ISBL Detailed Engineering
- Completion of all Studies and Investigations
 - HAZOP
 - Constructability
 - Impact on Kaskaskia Watershed
- Determine Regulatory and Permitting Pathway

Acknowledgements

Name	Organization	
Andrew Jones	National Energy Technology Laboratory / US Department of Energy	
Don Gaston, Javier Arzola, Rich Meyer	Prairie State Generating Company	
Yongqi Lu, Vinod Patel, Stephanie Brownstein, Jason Dietsch, Jason (Zhenxing) Zhang	Prairie Research Institute / University of Illinois Urbana-Champaign	
Tiffany Wu, Tim Thomas, Cole Maas	MHIA	
Keisuke Iwakura, Shintaro Kiuchi	MHIENG	
Matt Thomas, Alison Brown, Bob Slettehaugh	Kiewit Engineering Group	
Paula Guletsky, Anthony Baker	Sargent & Lundy	

This project is supported by the U.S. Department of Energy / National Energy Technology Laboratory (DOE/NETL) through Cooperative Agreement No. DE-FE0031841

I ILLINOIS Prairie Research Institute PRAIRIE STATE **Generating Company**

J.S. DEPARTMENT OF NERGY