Full-Scale FEED Study For a 816 MWe Capture Plant at the Prairie State Generating Company Using Mitsubishi Heavy Industries of America Technology

Kevin C O'Brien, PhD
Director, Illinois Sustainable Technology Center
Director, Illinois State Water Survey
Prairie Research Institute
University of Illinois at Urbana-Champaign

DOE/NETL 2020 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting
Pittsburgh, PA / August 17, 2020
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Cooperative Agreement No. DE-FE0031841

PROJECT OVERVIEW

Funding: $17,509,676
DOE: $14,004,676
20% Cost Share: $3,505,000 (PSGC)
Work Period: 1 Jan 2020 – 31 Dec 2021

PROJECT OBJECTIVES:

Overall: Perform a Front-End Engineering Design (FEED) study for the retrofit of the Prairie State Generation Company’s (PSGC) coal-fired power plant with post-combustion carbon capture. The FEED study will outline the use of Mitsubishi Heavy Industries’ (MHI) Advanced KM CDR Process™ to retrofit one of PSGC’s two generating units (approximately 816 MWe). The FEED study will enable PSGC to move forward with actual build/operate in future work.
Project Team Management Structure

Well-defined roles based on relevant capabilities

PRAIRIE STATE
Generating Company
PSGC Host Site
- 816 MWe Pulverized Coal-fired Plant
- Equipped with FGD, ESP, baghouse, SCR

ILLINOIS
Prairie Research Institute
AWARDEE
University of Illinois (UIUC)
Dr. Kevin C O'Brien
Dr. Yongqi Lu
- Project management
- Host site coordination
- Permitting/regulatory concerns
- Assist with technology commercialization

MITSUBISHI
SUBAWARDEE
Mitsubishi Heavy Industries America, Inc. (MHIA)
- ISBL detailed design and engineering of CC components

Kiewit
SUBAWARDEE
Kiewit Engineering Group Inc.
- OSBL detailed design
- ISBL and OSBL capital cost estimates
- Operating and maintenance costs estimates
- Assist with procurement and construction timeline

MITSUBISHI HEAVY INDUSTRIES ENGINEERING
Mitsubishi Heavy Industries Engineering

Sargent & Lundy
- OSBL preliminary design

Steering Committee
- Don Gaston, PSGC-CEO, Chair
- Kevin C O'Brien, UIUC
- Yongqi Lu, UIUC
- Alyssa Harre, PSGC Communications & Government Relations Director
- Helen Gallagher, PSGC General Counsel
- Tim Thomas MHIA
- Paula Guletsky, S&L
- Matthew Thomas, Kiewit
 - J. Todd Morley, Chairman, G2 Investment Group
FRONT-END ENGINEERING DESIGN STUDIES FOR CARBON CAPTURE SYSTEMS ON COAL AND NATURAL GAS POWER PLANTS

TECHNICAL BACKGROUND
Solvent and System Designed for Improved Performance

Benefits over other capture options

- **Amine washing** system reduces VOC emissions and amine loss

Proven at the 240 MWe level now enhanced with an advanced solvent to produce an even more cost-effective solution for carbon capture. Vital when scaling to an 816 MWe capture plant.

- **KS-21™ solvent** which has similar characteristics to KS-1™ but is more stable
- **Heat integration** system to reduce steam consumption

- Automatic load adjustment control
- Amine filtration and purification systems
- Proven tower design for even gas/liquid distribution
Project Technology Development 1990 - present

Matured and ready for proposed large scale testing

- Began R&D with Kansai Electric Power Co. - 1990
 2 tpd pilot plant at KEPCO’s Nanko Power Station - 1991
- Developed KS-1™ and KM CDR Process™ - 1994
- 1999 - 200 tpd plant in Malaysia
- 1 tpd coal pilot test at Hiroshima R&D Center - 2002
 Developed proprietary energy efficient process - 2003
- 2005 - 330 tpd plant in Japan
- 2006 - two 450 tpd plants in India
- 10 tpd coal pilot test at Matsushima - 2006
- Large absorber flow test at Mihara works - 2008
- 2009 - 450 tpd plant in India; 450 tpd plant in Bahrain
- 2010 - 400 tpd plant in UAE; 240 tpd plant in Vietnam
- 2011 - 340 tpd plant in Pakistan
- 2012 - 450 tpd plant in India
- Plant Barry 500 tpd demonstration project – 2011-2014
- 2014 - 500 tpd plant in Qatar
- 2016 - Petra Nova Project – 4,776 tpd plant in Texas
Opportunity to Evaluate Improved Solvent (KS-21)

Many advantages over the solvent used at Petra Nova (KS-1™)

<table>
<thead>
<tr>
<th>Parameters Relative to KS-1™</th>
<th>KS-1™</th>
<th>KS-21™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatility</td>
<td>100</td>
<td>50-60</td>
</tr>
<tr>
<td>Thermal degradation rate</td>
<td>100</td>
<td>30-50</td>
</tr>
<tr>
<td>Oxidation rate</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>Heat of absorption</td>
<td>100</td>
<td>85</td>
</tr>
</tbody>
</table>

✓ **Thermal stability**
 • Reduce thermal degradation and allow higher stripping T and P, reducing compression work

✓ **Oxidative stability**
 • Potentially more tolerant to impurities
 • Reduce amine oxidation and HSS formation rate

✓ **Volatility**
 • Reduce amine loss from emission and cost of water wash system
 • Steam consumption savings outweigh cost increases due to higher solvent circulation
Key Activity

TECHNICAL APPROACH / PROJECT SCOPE
Project Tasks

Designed to address deliverables and transition to actual build / operate

<table>
<thead>
<tr>
<th>Task #</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Project Management and Planning</td>
</tr>
<tr>
<td>2.0</td>
<td>Front-End Engineering Design (FEED) Study</td>
</tr>
<tr>
<td>2.1</td>
<td>Design Basis</td>
</tr>
<tr>
<td>2.2</td>
<td>Preliminary Engineering</td>
</tr>
<tr>
<td>2.3</td>
<td>ISBL Detailed Engineering</td>
</tr>
<tr>
<td>2.4</td>
<td>OSBL Detailed Engineering</td>
</tr>
<tr>
<td>2.5</td>
<td>Studies and Investigations</td>
</tr>
<tr>
<td>2.6</td>
<td>Cost Assessment</td>
</tr>
<tr>
<td>3.0</td>
<td>Regulatory and Permitting at Host Site</td>
</tr>
<tr>
<td>4.0</td>
<td>Final FEED Study Package</td>
</tr>
</tbody>
</table>
Project Milestones

<table>
<thead>
<tr>
<th>Task / Subtask #</th>
<th>Deliverable Title</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Project Management Plan Update</td>
<td>3/3/2020</td>
</tr>
<tr>
<td>2.0</td>
<td>Design Basis Document Complete</td>
<td>10/30/20</td>
</tr>
<tr>
<td>2.0</td>
<td>Report on Utility Requirements</td>
<td>11/19/20</td>
</tr>
<tr>
<td>3.0</td>
<td>Preliminary Regulatory and Permitting Pathway</td>
<td>2/18/21</td>
</tr>
<tr>
<td>2.0</td>
<td>HAZOP Review</td>
<td>4/30/21</td>
</tr>
<tr>
<td>2.0</td>
<td>Impact on Kaskaskia Watershed Document Complete</td>
<td>5/28/21</td>
</tr>
<tr>
<td>2.0</td>
<td>Constructability Review Complete</td>
<td>6/30/21</td>
</tr>
<tr>
<td>3.0</td>
<td>Regulatory and Permitting Analysis Complete</td>
<td>8/6/2021</td>
</tr>
<tr>
<td>2.0</td>
<td>Detailed Engineering Document Complete</td>
<td>11/30/21</td>
</tr>
<tr>
<td>4.0</td>
<td>Final Report Submitted</td>
<td>12/31/21</td>
</tr>
<tr>
<td>4.0</td>
<td>FEED Study Package Complete</td>
<td>12/31/21</td>
</tr>
</tbody>
</table>
Risk & Mitigation Strategy

<table>
<thead>
<tr>
<th>Description of Risk</th>
<th>Probability</th>
<th>Impact</th>
<th>Risk Management Mitigation and Response Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical / Scope Risks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insufficient water supply</td>
<td>Low</td>
<td>Low</td>
<td>• Studies outlined in SOPO - explore various options to source the cooling and makeup water demands of the capture system including supply from host site vs. an external source.</td>
</tr>
<tr>
<td>Uncertainty associated with the need of identifying steam and electric sourcing</td>
<td>Low</td>
<td>Low</td>
<td>• Studies outlined in SOPO - explore options to address these issues. Can apply learnings from Petra Nova Project.</td>
</tr>
<tr>
<td>Costs / Schedule Risks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project cost and/or schedule overruns</td>
<td>Low</td>
<td>High</td>
<td>• Team has previous experience conducting FEED studies on budget and on time</td>
</tr>
<tr>
<td>Management / Planning Risks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability of key personnel for project</td>
<td>Low</td>
<td>Medium</td>
<td>• Commitments received from partner organizations</td>
</tr>
<tr>
<td>Uncertainty of permitting agencies and timelines</td>
<td>Low</td>
<td>Low</td>
<td>• Meetings with relevant agencies for previous projects enabled baseline knowledge for timelines and requirements</td>
</tr>
<tr>
<td>EH&S Risks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air (amine and CO₂) emission management</td>
<td>Low</td>
<td>Low</td>
<td>• Leverage experience from Petra Nova Project to meet strict VOC permit requirements</td>
</tr>
<tr>
<td>Wastewater stream management</td>
<td>Low</td>
<td>Medium</td>
<td>• Built into ISBL design criteria</td>
</tr>
<tr>
<td>External Factors Risks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative stakeholder response to FEED study</td>
<td>Low</td>
<td>Low</td>
<td>• Studies outlined in SOPO – explore options to address these issues</td>
</tr>
<tr>
<td>Financial Risks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost share for project not obtained or insufficient</td>
<td>Low</td>
<td>High</td>
<td>• Cost share authorized by host site’s Board of Directors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Host site is financially stable</td>
</tr>
</tbody>
</table>

Kiewit
Mitsubishi Heavy Industries America
Illinois Prairie Research Institute
Prairie State Generating Company
National Energy Technology Laboratory
U.S. Department of Energy
Key Activity

DESIGN BASIS
FEED Design Basis Overview

- Build Location at PSGC
 - CC Unit Footprint Concept
- OSBL / ISBL Design Basis
- CO$_2$ Product Specification
- Flue Gas Measurement
- Flue Gas Desulfurization (FGD) Selection

- Preliminary List of Waste Streams
- Steam and Electric Sourcing Study
- Transportation Study
- Estimate of Water Needs
 - Water Sourcing Options
 - Water Storage
Carbon Capture Unit Site Location

Source: Google Earth
Design Basis

OSBL and ISBL Design Basis

• Design basis is nearly set, pending results from flue gas stack testing

CO$_2$ Product Specification

• The Carbon Capture Team worked with the CarbonSAFE team to select an appropriate CO$_2$ product specification that will allow for sequestration at various potential sites and for other beneficial use
Design Basis

Flue Gas Measurement

• Flue gas composition was analyzed at various operating conditions. The results will be used to determine design parameters

Flue Gas Desulfurization Selection

• Integrated FGD system that uses caustic soda

Preliminary Waste Streams

• Compiling a list of waste streams to work with regulators
Design Basis

Steam and Electric Sourcing Study
• Cogeneration; Steam and Electricity
• Auxiliary Boiler
 – Purchasing electricity from the grid

Transportation Study
• Evaluate the transportation infrastructure around PSGC to assess the routes for shipping materials and determine the maximum dimensions/weight for the equipment that will be shipped to the build site
Considerations Based on Estimate of Water Needs

Water Sourcing Options

• Community water supply reservoirs
• Tributary streams
• Groundwater in the Kaskaskia River valley
• Federal lakes (Lake Shelbyville and Carlyle Lake)

Water Storage

• 25-year Drought conditions
 – 26 days without being able to draw water
 – Reviewing options for mitigating risk
Key Activity

NEXT STEPS
Moving Forward

- Preliminary Engineering
- OSBL / ISBL Detailed Engineering
- Completion of all Studies and Investigations
 - HAZOP
 - Constructability
 - Impact on Kaskaskia Watershed
- Determine Regulatory and Permitting Pathway
Acknowledgements

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Jones</td>
<td>National Energy Technology Laboratory / US Department of Energy</td>
</tr>
<tr>
<td>Don Gaston, Javier Arzola, Rich Meyer</td>
<td>Prairie State Generating Company</td>
</tr>
<tr>
<td>Yongqi Lu, Vinod Patel, Stephanie Brownstein, Jason Dietsch, Jason (Zhenxing) Zhang</td>
<td>Prairie Research Institute / University of Illinois Urbana-Champaign</td>
</tr>
<tr>
<td>Tiffany Wu, Tim Thomas, Cole Maas</td>
<td>MHIA</td>
</tr>
<tr>
<td>Keisuke Iwakura, Shintaro Kiuchi</td>
<td>MHIENG</td>
</tr>
<tr>
<td>Matt Thomas, Alison Brown, Bob Slettehaugh</td>
<td>Kiewit Engineering Group</td>
</tr>
<tr>
<td>Paula Guletsky, Anthony Baker</td>
<td>Sargent & Lundy</td>
</tr>
</tbody>
</table>

This project is supported by the U.S. Department of Energy / National Energy Technology Laboratory (DOE/NETL) through Cooperative Agreement No. DE-FE0031841