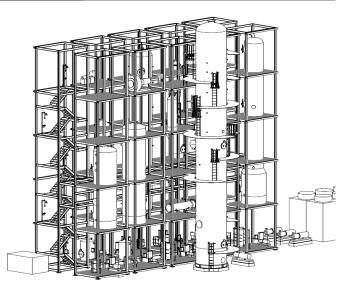
UKy-CAER Heat-integrated Transformative CO₂ Capture Process in Pulverized Coal Power Plants (DE-FE00031583)

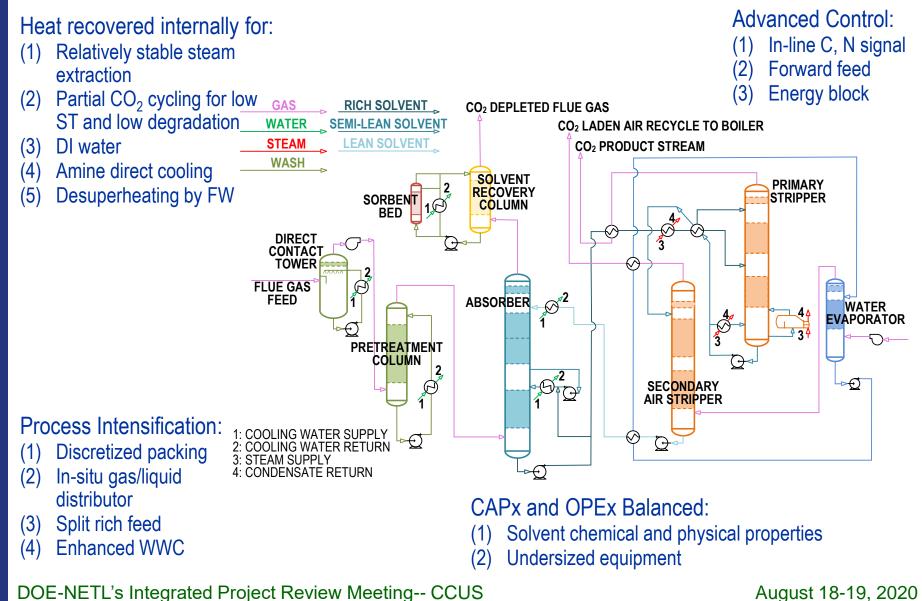
Kunlei Liu, Heather Nikolic and Jesse Thompson


University of Kentucky Center for Applied Energy Research Lexington, KY http://www.caer.uky.edu/powergen/home.shtml

caer.uky.edu

DOE-NETL's Integrated Project Review Meeting-- CCUS

Executive Summary


- Process oriented technology, applicable with any 2nd generation solvent with short columns and low operating cost, proven at bench and small-pilot
- Host site at WY ITC, minor source air permits for construction approved
- All engineering-related activities complete, fixed cost estimate in progress
- TEA in progress
- EIV revision complete
- Team in place with expertise covering all aspects chemistry, engineering, fabrication, installation, operation, control, environment, health and safety, permit and waste management
- Cost share arrangements in progress

Project Team Member	Working Together Since	Significant Accomplishments Together
CCSUS	2016	Solvent campaigns conducted at large bench and small pilot scales
CMU	2018	New collaborator on advance process control
EPRI 2008		CCS TEAs since 2012; 0.7 MWe small pilot CCS
		independent testing and calculation verification
ITC	2018	10 MWe large pilot CCS host site for design basis
KMPS	2009	0.7 MWe small pilot CCS ISBL process and equipment design and supply
Parsons	2011	CCS TEA cost estimation and large-pilot OSBL
SMG	2009	EH&S assessments, NEPA and EIVs of CO ₂ capture
Trimeric	2015	Cost estimation of CCS and gasification processes
UTA	2013	Aspen model and simulation development 0.7 MWe small pilot CCS emissions monitoring

DOE-NETL's Integrated Project Review Meeting-- CCUS

UKy-CAER CO₂ Capture Technology Self-adaptive (Operating Conditions and Solvents)

caer.uky.edu

From Bench to Small-pilot and Large-pilot

UKy-CAER CCS Transformative Technologies (Scale Verified)

Heat Integration, Two-stage Stripping with Low Primary Stripper Temperature (CAER Small Pilot) Discretized Packing and Load-robust Liquid/Gas Distribution (CAER Large Bench and Industrial-scale) A Solvent Bessyory System (CAER Large Bench and Small Pilot)

- Solvent Recovery System (CAER Large Bench and Small Pilot)
 - Undersized L/R Exchanger and Pressurized Stripper (CAER Small Pilot and Industrial practice)
 - Carbon Steel Material of Construction (Industrial common practice)
 - Undersized Thermal Reclaimer with Continuous Operation (CAER Small Pilot)
 - Advanced Solvent (CAER Small Pilot and CCSL Large Pilot)
 - A Short Packing Column (CAER Small Pilot)
 - Advanced Control with Energy Computing Block (CAER Small Pilot and CCSI)
 - Split Rich Solvent Feed to Primary Stripper (UT Small Pilot at NCCC)
 - Exergy Loss Minimization using FW Heater (CAER Aspen simulation)

UKy-CAER 0.7 MWe Small Pilot CCS Findings

Net 8 MWe gain from the steam superheat recovery prior to reboiler

- Minimum energy consumption obtained at max temperature drop inside stripper
- 30-40 minutes response time to load changes

Absorber oversized and near-equilibrium solvent absorption with 40 ft packing 36% lower regeneration energy compared to RC 10 achieved with advanced solvents Se levels in the solvent after 1000 hours run exceed the RCRA hazardous waste limit Additive/inhibitor effective for multi-function as reducing corrosivity and degradation Thermal compression benefits realized only when L/R exchanger approach T <20 °F 4.9-1385 ppmv amine solvent emissions due to entrainment and aerosol formation Column channel flow observed by 20 °F shift under same conditions 90% CO₂ capture with 99.9+% purity easily achieved Air stripper regenerates >10% of CO₂ captured

Insignificant corrosion on amine contacted wet surface except stripper

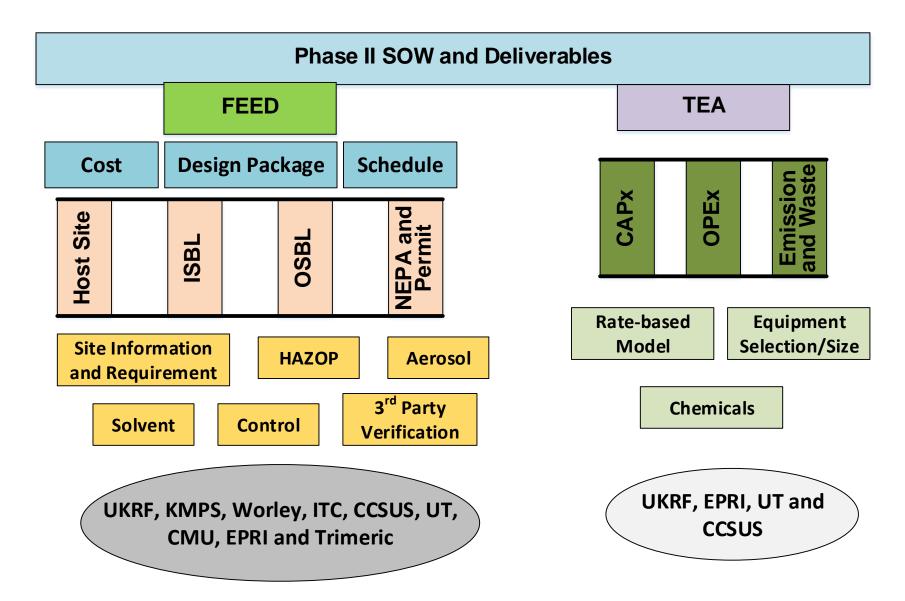
Impact of secondary air stripper on solvent oxidative degradation is negligible

13% lower regeneration energy compared to RC 10 achieved with MEA

UKy-CAER 0.7 MWe Small Pilot CCS >4500 operational hours logged

2015	2016		2017	2018	2019 - 2024
MEA	H3-1	CAER	6M MEA	UK A2	CDRMax CDRMax, UK Solvent

Preliminary Economic Analysis


Economics of Integrated UKy-CAER CCS.					
UKy-CAER CCS Cost Estimate	RC B12B ^[11]	UKy-CAER CCS	Percent Difference		
Net Power, MWe	550	550	0%		
Total Plant Cost (2011 \$/kW)	3524	2977	-16%		
Total Overnight Cost (2011\$/kW)	4333	3660	-16%		
Total As-Spent Cost (2011\$/kW)	4940	4173	-16%		
COE (\$/MWh, 2011\$) (including T&S)	142.8	125.2	-12%		
COE (\$/MWh, 2011\$) (excluding T&S)	133.2	116.9	-12%		
CO ₂ T&S Costs	9.6	8.3	-13%		
Fuel Costs	30.9	29.5	-5%		
Variable Costs	12.3	12.4	1%		
Fixed Costs	15.4	13.0	-16%		
Capital Costs	72.2	61.9	-14%		
Cost of CO ₂ Captured (\$/tonne CO ₂) (including T&S)	67.8	51.4	-24%		
Cost of CO ₂ Captured (\$/tonne CO ₂) (excluding T&S)	58.2	41.4	-29%		
Cost of CO ₂ Avoided (\$/tonne CO ₂)	89.4	61.6	-31%		

Goals and Objectives

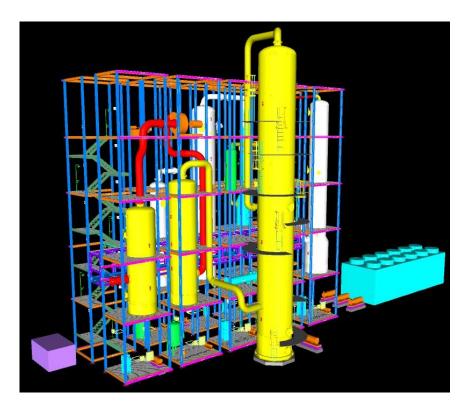
Phase II

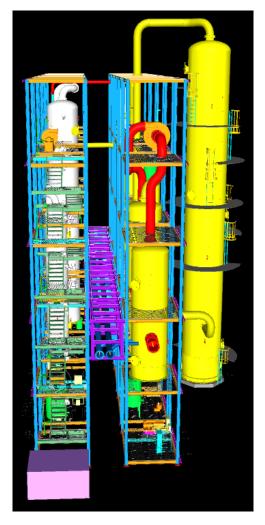
- Complete all necessary preparation and be ready to begin fabrication design and construction immediately in Phase III
 - Complete the FEED
 - Detailed cost and schedule for Phase III (ISBL is fixed cost, OSBL is Class 2)
 - Completing the permitting process with WY ITC as host site
- Securing cost share for Phase III
- Updating the TEA
- Phase III
 - Complete detailed engineering design, procurement, fabrication, assembly, and construction
 - 2000 hours of testing and demonstration
 - Technology transfer

Phase II Scope of Work

DOE-NETL's Integrated Project Review Meeting-- CCUS

August 18-19, 2020


caer.uky.edu


Project Funding and Gantt Chart

Funding	Funding	Performance Dates
Phase I	\$1,177,550	04/01/18 to 08/31/19
Phase II	\$2,786,841	09/01/19 to 5/31/21

Task Name	Start	Finish	H2	2020	H1	1	H2	2021 H1
Phase II Schedule	Sun 9/1/19	Mon 5/31/21	1	12			114	
1 Project Management and Planning	Sun 9/1/19	Mon 5/31/21	-					
2 FEED Study	Sun 9/1/19	Mon 8/31/20	-				-	
2.1 ISBL Feed Study	Sun 9/1/19	Sun 5/31/20				1		
2.2 CCS Process Control Scheme	Sun 9/1/19	Tue 6/30/20						
2.3 Aerosol Emissions Model Developn	nen1Sun 9/1/19	Tue 6/30/20						
2.4 OSBL FEED Study	Sun 9/1/19	Mon 8/31/20					1	
2.5 Process HAZOP	Sun 9/1/19	Thu 4/30/20	-					
3 NEPA/Permitting at Host Site	Sun 9/1/19	Tue 6/30/20	-			-		
4 Team and Cost Share Commitments	Sat 2/1/20	Mon 11/30/20						1
5 Techno-Economic Analysis	Sun 9/1/19	Sat 10/31/20	-					
6 Project Schedule and Cost Estimate	Fri 5/1/20	Fri 12/4/20						

ISBL Completed

KMPS issued: solution volumes, IA datasheet, equipment list, pump, blower and filter specifications, and foundation loads.

DOE-NETL's Integrated Project Review Meeting-- CCUS

Facilities

caer.uky.edu

🚬 Center for Applied Energy Research

2x3 (total 6 modules) with standalone integrated cooling tower

Footprint of CCS modules: 28' x 44' Highest: 75'

DOE-NETL's Integrated Project Review Meeting-- CCUS

2x5 (total 10 modules) with stand-alone absorber and conventional cooling tower

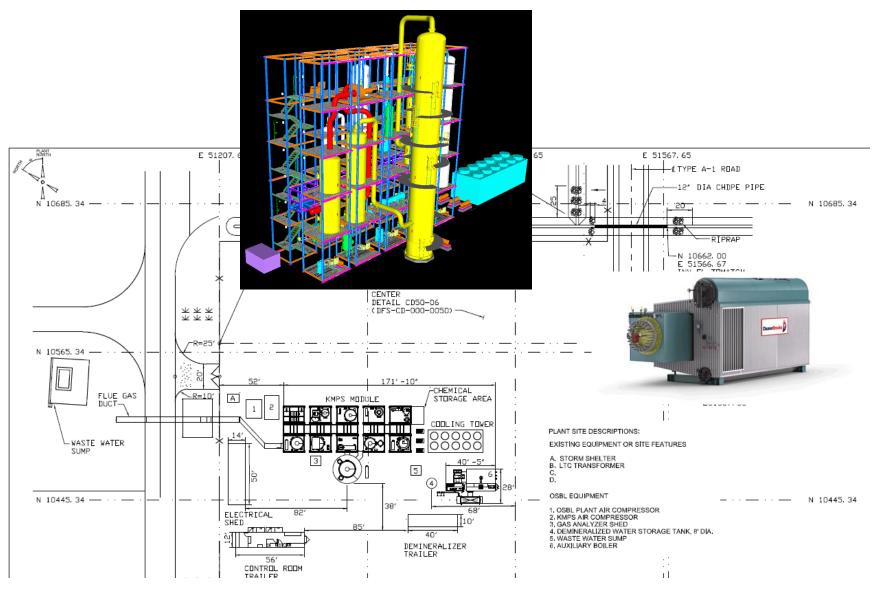
Footprint of CCS modules: 34' x 76' Highest: 88'

Host Site and PC Unit

0.7 MWe

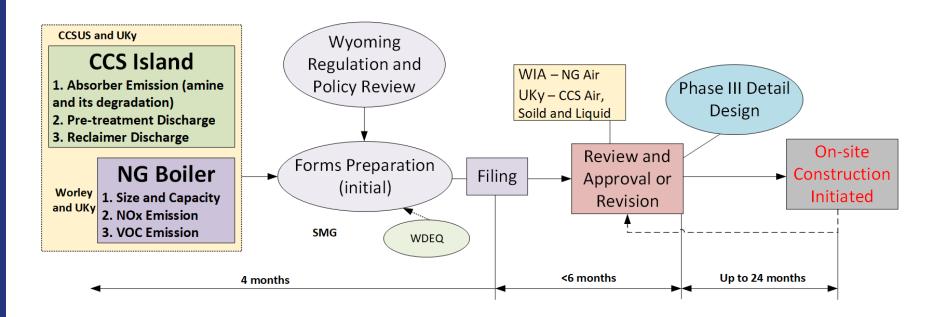
KU's EW Brown Generating Station					
Elevation	850 ft				
Temperature	27 - 87 °F				
Unit 3					
Boiler	Wall-fired PC				
APCD	Low NOx Burner, SCR, ESP, PAC+Baghouse, WFGD				
Steam Cycle	Subcritical, 457 MWe (net)				
Coal	Eastern bituminous coal				

10 MWe


ITC in conjunction with BEPC Dry Fork Station					
Elevation	4250 ft				
Temperature	-40 - 37 °F				
Unit 1					
Boiler	Wall-fired PC				
APCD	Low NOx Burner, SCR, Spray-dry FGD				
Steam Cycle	Subcritical, 385 MWe (net)				
Coal	PRB				

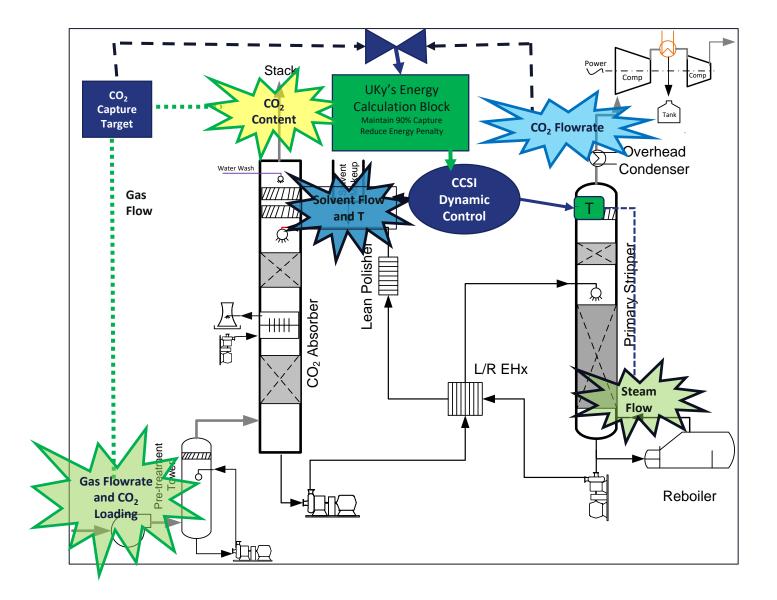
DOE-NETL's Integrated Project Review Meeting-- CCUS

10 MWe Facility General Layout

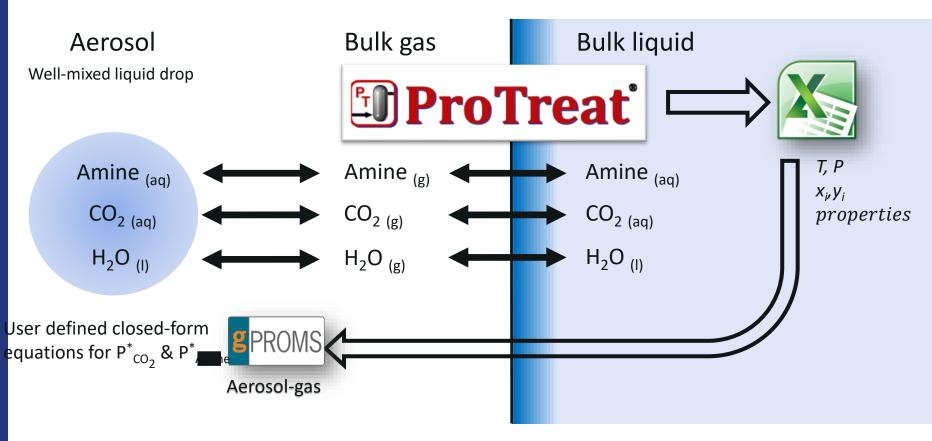


caer.uky.edu

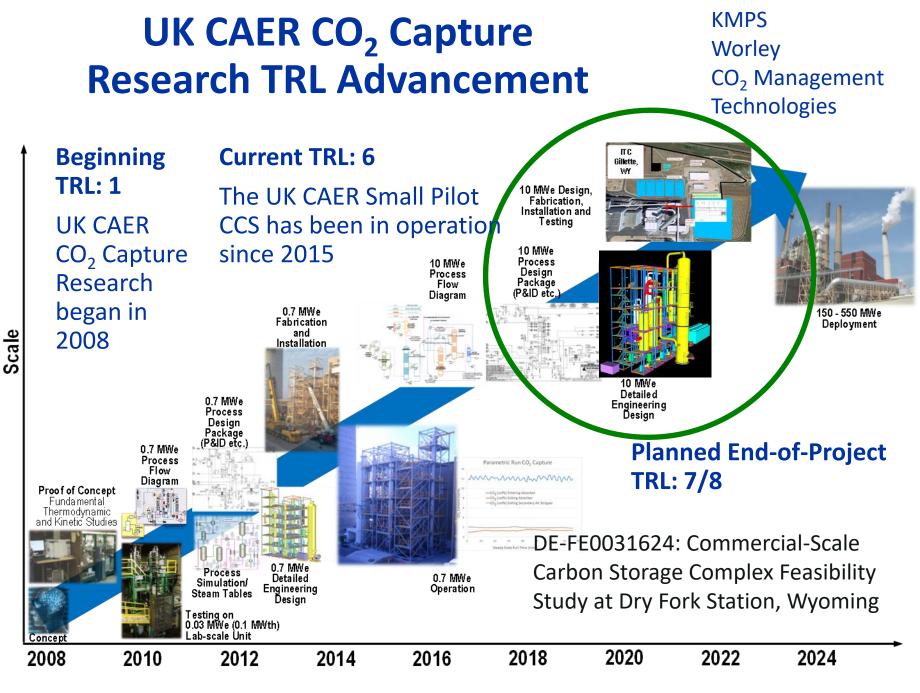
DOE-NETL's Integrated Project Review Meeting-- CCUS


Permitting Process and Permits Approved

 Minor source construction permits are required under WDEQ's NSR program prior to commencing construction: NG boiler and CCS processed flue gas


DOE-NETL's Integrated Project Review Meeting-- CCUS

Forward-feed and Energy Computational Control



DOE-NETL's Integrated Project Review Meeting-- CCUS

Aerosol Modeling and Verification

DOE-NETL's Integrated Project Review Meeting-- CCUS

DOE-NETL's Integrated Project Review Meeting-- CCUS

August 18-19, 2020

caer.uky.edu

Wrap-Up

- UK CAER has a demonstrated CO₂ capture technology ready for the large-pilot with minimal risk
- All engineering aspects of the ISBL SOW complete
- Fixed cost for ISBL and Class 2 for OSBL in process
- Cost share is identified and being finalized
- Plan for technology transfer in Phase III

Acknowledgements

U.S. DOE NETL: Andy Aurelio, José Figueroa, Greg O'Neil, Lynn Brickett and John Litynski

ITC: Ray DeStefano, Jim Ford, Will Morris and Jason Begger

CCSUS: Will Shimer, Dave Bahr and Gopi Kiran

EPRI: Abhoyjit Bhown and Yang Du

KMPS: Stan Lam and Terence Nish

Worley: Keith McKenrick, Gary Von Bargen, and Sandeep Jain

SMG: Clay Whitney and Stewart McCollam

Trimeric: Rosalind Jones and Andrew Sexton

UTA: Korede Akinpelumi and Gary Rochelle

CUM: David Thierry and Lorenz Biegler

UKy: Don Challman