
Design and costing of ION's CO₂ capture plant retrofitted to a 700 MW coal-fired power plant

2020 NETL CO₂ Capture Technology Project Review Meeting August 18, 2020

Project: Commercial Carbon Capture Design and Costing: Part 2 (C3DC2) - DE-FE0031840 Andy Awtry, Ph.D. – VP Engineering ION Clean Energy, Boulder, CO, USA

ION's CO₂ Capture Technology Development Accelerated development path leveraging existing research facilities

ION Technology Overview

....

CO₂ released

from solvent

by adding heat

CO₂ compressed

for utilization

or storage

Solvent

without CO₂

Heat

Exchange

Energy In

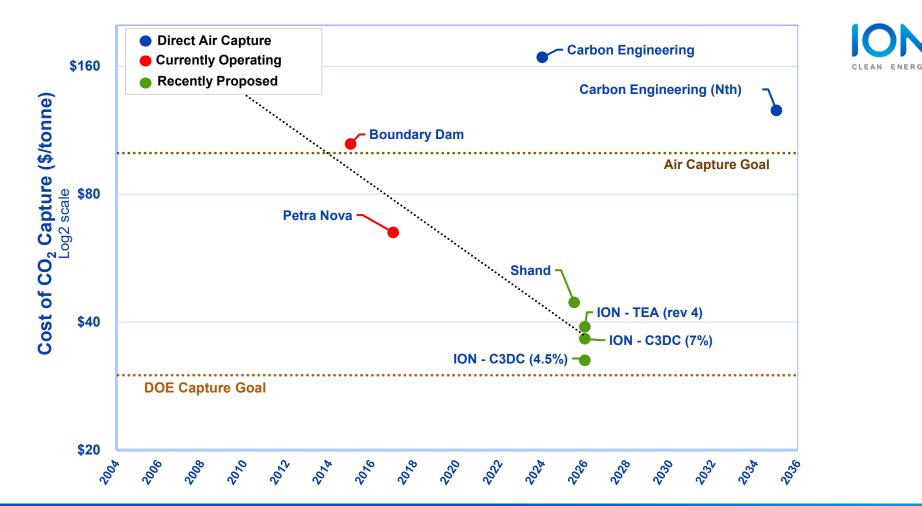
 Proprietary Solvent-based Technology Flue gas without CO2 Liquid absorbent-based capture Low aqueous Worldwide Patents Flue gas Established Engineering Process without CO₂ Flue gas - Learnings from Boundary Dam with CO₂ Learnings from Petra Nova . . **Basis of Performance** ... • -Cooled flue ... Utility/Refinery/Plant gas enters absorption Fast kinetics (on par or faster than MEA) tower Working capacity (higher than MEA) Boiler Low heat capacity (much lower than MEA) Steam to Turbines < 1,090 Btu/lb CO₂ (2.5 MJ/kg CO₂)

Fuel: Coal, Natural Gas...

Electricity to the Grid

ION Technology Overview Value Added

- High Capture Efficiency
 - Up to 96% CO₂ Capture
- Design System for CAPEX/OPEX savings
 - Smaller absorber column(s) vs higher carrying capacity
 - Pumps/HEXs are smaller due to lower liquid flow rates
- Low regeneration energy requirement
 - Low parasitic load
 - Low steam demand reduction in plant de-rate if integrated into the steam cycle
- Demonstrated lower corrosion rates than MEA
- Demonstrated lower total emission rates than MEA


Commercial Carbon Capture Design & Costing (C3DC) DE-FE0031595 – Previous Award, Completed Q4 2019

- Objective: Retrofit a Carbon Capture System at a power station
 - Nebraska Public Power District's (NPPD) Gerald Gentleman Station (GGS)
 - 300 MWe Slipstream for carbon capture
 - Ownership model: NPPD owns and operates the capture island
 - Design Basis: CO₂ product for enhanced oil recovery (not regulatory driven)
- Class 3 (AACE) Cost Estimate
 - Cost Estimate is -20% to +30%
 - Completed about 20% of Engineering Effort
- Completed 18mo Project in Q4 of 2019

Commercial Carbon Capture Design & Costing Study

		Value	Units
	Slipstream	300	MWe
	EPC Capital Cost	\$438,000,000	\$
	Loan Term	20	years
	Interest Rate	4.5%	%
	Total OPEX	\$28,200,000	\$/yr
-	Total Annual Cost	\$61,800,000	\$/yr
-	Total Annual CO ₂ Production CF	1,900,000	tonne/yr
1-11	Cost of CO ₂ Capture	\$32.50	\$/tonne

COMMERCIAL CARBON CAPTURE DESIGN & COSTING STUDY: PART 2

DE-FE0031840

Nebraska Public Power District Host Site – Gerald Gentleman Station

- Located in Sutherland, Nebraska
- Largest generating station in Nebraska
- Two units with total capacity of 1,365
 MW
 - Unit 1 1979 665 MW

Burns Powder River Basin Coal

Commercial Carbon Capture Design & Costing Study: Part 2 (C3DC2) DE-FE0031840

- Retrofit a Carbon Capture System at an existing power station
 - Nebraska Public Power District's (NPPD) Gerald Gentleman Station (GGS)
 - 700 MWe carbon capture system (2x 350 MWe trains)
 - Ownership model: Capture System is 3rd Party Owned and Operated
 - Design Basis: CO₂ product for EOR (not regulatory driven)
- Class 2 (AACE) Capital Cost Estimate
 - Estimate Accuracy Range: -15% to +20%
 - Complete about 50-60% of Engineering Effort
- 18-month project; to be completed in Q1 of 2021
- \$5.8M project budget
 - \$4.6M DOE-NETL
 - \$1.2M ION & Partners

C3DC2 Study Project Team and Roles

ION Clean Energy

- Technology Developer
- Process Design and Project Management

Koch Modular Process System

- Carbon Capture pilot
 experience and expertise
- Capture Process
 Oversight, Design and
 Costing

Nebraska Public Power District

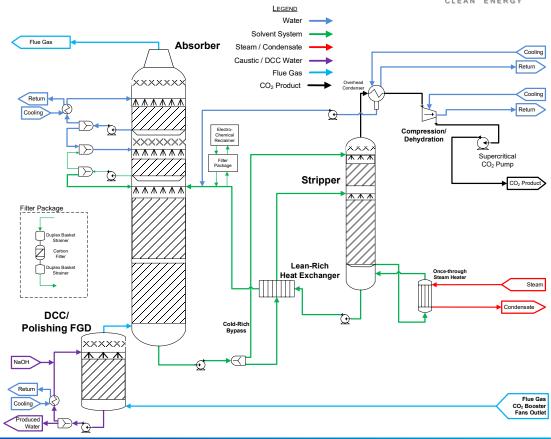
- Host Site (GGS)
- Power Generation Engineering,
 Operational and Financial Expertise

Sargent & Lundy

Sargent and Lundy

- Balance of Plant (BOP)
 - Engineering
- Overall Cost Estimate Development
- Constructability Review
- Construction Cost Estimating

SIEMENS Siemens Ingenuity for life


Compressor Vendor

ProTreat[®] Process Model *ION CO*₂ *Capture Process*

Key features of ION process compared to 'common' MEA-designed plant

- Cold-Rich By-pass
- Optimized lean rich cross exchanger (LRXC) design
- Caustic addition to DCC to act as SO_x
 Polishing Scrubber
- Compressor Selection

ProTreat output provides stream tables, key performance indices, and steam, cooling and electrical duties

System Design 700MWe CO₂ Capture Plant

- Capture System Design
 - 2x 50% trains for the Capture Island
 - 2x 50% on major pieces of equipment to assist in turndown and provide some risk mitigation
 - Designed for operation at full load, and track plant load to maximum turndown
 - Designed for 90% capture of CO₂; it is a load following plant so >95% capture at turndown
 - CO₂ product at historic plant CF (2018-2019): 4.3M tonnes of CO₂/yr
- BOP Design
 - Steam sourcing from GGS2 steam cycle
 - Cooling water from a hybrid system

C3DC2 Study Design Basis

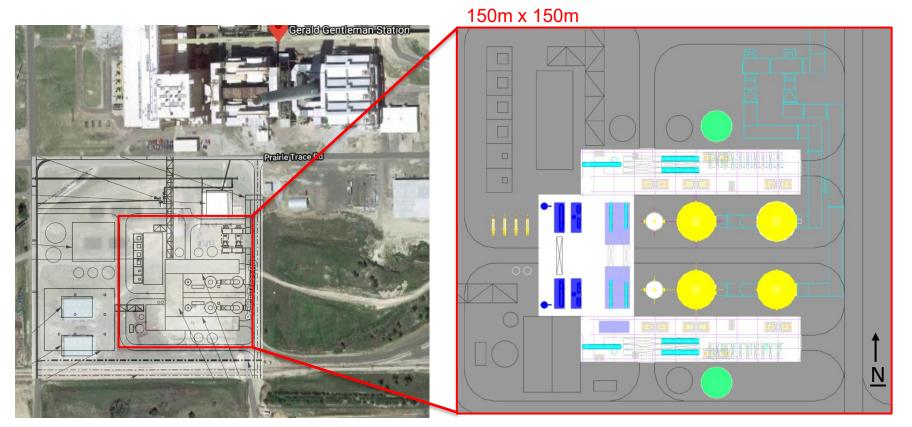
	% Complete 👻	Task Name 👻	Ownership 🗸 🗸
1	50%	C3DC2 Project - FEED Study	
2	64%	1.0 Project Management and Planning	
19	80%	▲2.0 Overall Project Design Basis	
20	100%	M3: Overall Project Design Basis	ION, S&L, KMPS, Siemens
26	65%	Design Criteria (Mechanical, Electrical, I&C, and Structural)	S&L
32	82%	Operating Philosophy	ION
38	100%	Overall Process Flow Diagrams	S&L
44	0%	BOP System Design Description	S&L

C3DC2 Study

CO₂ Capture System Design

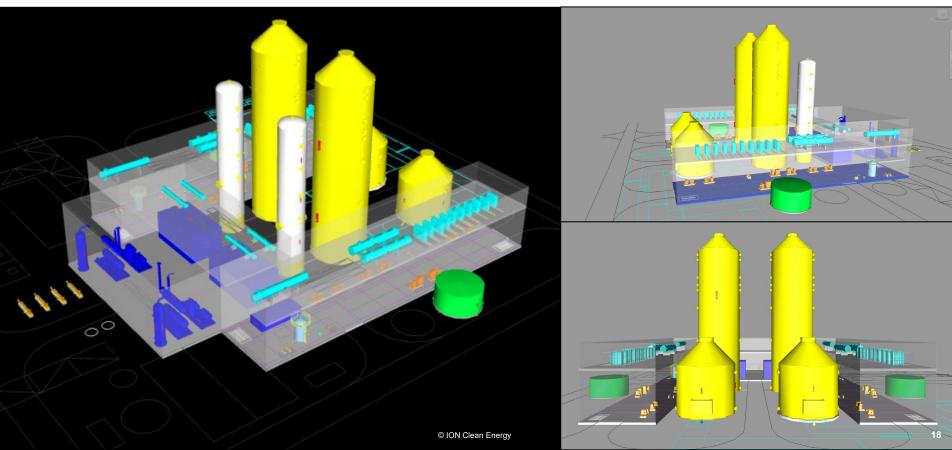
% Complete	e 🗸 Task Name	🗸 Ownership
50 70%	3.0 Process Design - CO2 Capture Island Design	
51 99%	Preliminary Design - CO2 Capture Island	
52 100%	Process Design Basis	ION, KMPS, Siemens
59 100%	ION Process Model	ION
64 100%	Process Flow Diagram	ION
68 100%	System Design Description	ION
72 95%	Heat and Mass Balance	ION, KMPS, Siemens
78 100%	Utility Requirements	ION, KMPS, Siemens
82 100%	Process Equipment List	ION, KMPS, Siemens
86 99%	Data Sheets for Process Equipment	KMPS, Siemens
102 100%	M4: Preliminary Design Review	ALL
103 <mark>52%</mark>	Detailed Design - CO2 Capture Island	
104 100%	CO2 Island Process Control Description	ION, KMPS, Siemens
108 <mark>64%</mark>	CO2 Capture System P&IDs	KMPS, Siemens
115 25%	CO2 Capture System Lists	ION, KMPS
122 <mark>0%</mark>	Compression/Dehydration System Lists	ION, Siemens
129 100%	CO2 Equipment Arrangement Drawings	KMPS, S&L, Siemens
130 70%	Support Efforts	ION
131 92%	3D Model Development for Carbon Capture Island	KMPS, Siemens

C3DC2 Study


Balance of Plant Engineering and Design – S&L w/ NPPD support

	% Complete 👻	Task Name
135	41%	4.0 Engineering & Design - Integration and BOP
136	41%	Detailed Design - Integration and BOP
137	47%	Mechanical Design
138	100%	Overall Mass Balance
144	89%	Overall Heat Balance
150	100%	• Overall Water Balance
156	30%	> 3D Model
161	66%	Site Plan
167	66%	Overall General Arrangement Drawing
173	65%	BOP P&IDs
179	44%	BOP Piping Line List
185	44%	BOP Valve List
191	43%	Terminal Point List
197	53%	Mechanical Equipment List
203	0%	BOP Mechanical Equipment Specs
209	0%	BOP Underground Piping Plan
215	5%	Piping Isometric and Layout Drawings
221	0%	Piping and Utility Relocation Drawings
227	0%	Demolition Drawings
233	5%	Cooling System Specification
239	0%	Fire Protection System Specification
245	0%	HVAC Specification
251	54%	₄ Civil Sitework Design
252	0%	Spill/Containment Plan

	% Complete 👻	Task Name
258	0%	Stormwater Runoff Plan
264	88%	Grade Elevation Study
270	100%	Geotechnical Study and Evaluation
276	20%	
277	24%	Foundation Drawings
283	67%	Ductwork Drawings
	0%	Utility Rack Drawings
295	0%	Architectural Drawings
301	21%	✓ Electrical Design
302	86%	Project Load List
308	67%	• One Line Diagrams
314	0%	Cable and Cable Tray Layouts
320	0%	Lighting Drawings
326	0%	BOP Electrical Equipment Specifications
332	26%	⊿ I&C Design
333	86%	Project Instrument List
339	84%	Controls Architecture Diagram
345	9%	Control Description
351	0%	Control System Equipment List
357	0%	Control System Specification
363	0%	Communications Infrastructure Specification
369	0%	Cable Block Diagrams by Loop
375	0%	Building and Facility Security Plan
381	54%	ION Technical Oversight of Integration & BOP Design
382	0%	M5: Critical Design Review


C3DC2 Study General Arrangement Drawing

C3DC2 Study Preliminary 3D Model – Carbon Capture System

C3DC2 Study

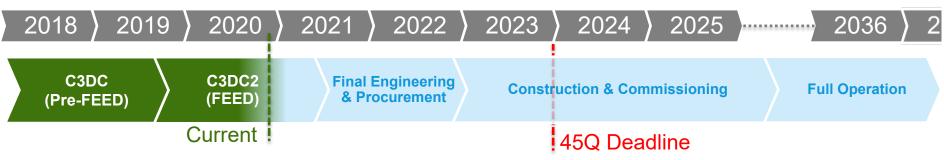
Studies and Investigations

	% Complete 👻	Task Name 👻
383	51%	₄ 5.0 Studies and Investigation
384	88%	Steam Sourcing Study
392	81%	Cooling Water System Study
400	88%	Solvent Materials Compatibility Study
407	75%	Wastewater Treatment Study
413	86%	Permitting and Regulatory Review
422	0%	Draft Permit Applications
430	47%	Selective Catalytic Reduction Costing Study
436	60%	Reagent Handling Study
442	0%	M6: HAZOP Review
454	3%	Constructability Review
462	0%	Overpressure Relief Study
466	0%	Project Execution & Operations Management Planning
491	57%	ION Technical Oversight of Studies

C3DC2 Study Cost Estimate and Reporting Tasks

	% Complete 👻	Task Name 👻
492	7%	46.0 Cost Estimate
493	10%	CO2 Capture Equipment Pricing
501	0%	BOP Equipment Pricing
504	0%	BOP Commodity Input
507	0%	Commodity and Construction Costs
510	0%	Operating & Maintenance Costs
516	0%	M7: Overall Cost Estimate and Cost of Capture
522	10%	ION Technical Oversight of Cost Estimate
523	0%	₄7.0 Reporting
524	0%	M8: Front-End Engineering Design (FEED) Report
531	0%	M9: Final DOE Project Report

Cost of CO₂ Capture Costing Basis



- Costing Efforts to begin in September 2020
- 3rd party owned and operated
 - Grid prices for power
 - Independent cooling water system
- Designed the CO₂ Capture Island to produce a reliable CO₂ product stream for EOR/Sequestration; Not regulation driven CO₂ capture
- Used historical data for the load-following unit to model cumulative captured CO₂ based on observed power plant load factor, capture plant uptime, and ambient conditions
- Calculate the cost with and without the additional flue gas pre-conditioning to isolate the cost of CO₂ capture for comparison to sites that may already have this equipment

Commercial Carbon Capture Design & Costing Study: Part 2 (C3DC2) DE-FE0031840

#	Milestone Title / Description	Projected Completion Date	Actual Completion Date	Comments
M1	DOE Kickoff Meeting	12/5/2019	12/5/2019	
M2	Updated PMP	10/31/2019	11/7/2019	Version 1.1
М3	Basis of Design for Project Finalized	1/10/2020	2/25/2020	Rev B of Basis of Design issued in February 2020
M4	Preliminary Design Review Complete	3/30/2020	5/6/2020	
M5	Critical Design Review Complete	8/31/2020		
M6	HAZOP Complete	11/24/2020		HAZOP meeting scheduled for Mid-Oct
M7	Overall Cost Estimate & Cost of Capture	1/12/2021		
M8	Front-End Engineering Design (FEED) Report	3/15/2021		
M9	Final DOE Report & Presentation	3/31/2021		

Path Forward

- 45Q changed the landscape for deploying carbon capture
 - Currently on track to qualify for 45Q tax credits
- 2021 Q1 Completion of C3DC2 Project (FEED)
 - Outcome of project will provide key learnings and necessary details for evaluation of deployment of CO₂ capture
 - Resource needs
 - Plant specific challenges (steam, cooling water and permitting)
 - Provide accurate costs (-15% to +20%) to feed a business model
 - Provide comparison between ownership models

Acknowledgement and Disclaimer

Acknowledgement

This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under cooperative award number DE-FE0031840.

Disclaimer

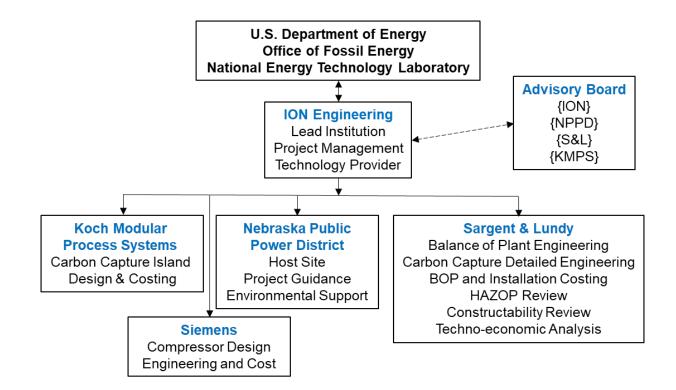
"This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Nebraska Public Power District

Sargent & Lundy LLC

ON

Thanks


C3DC2 Team:

ION: Andrew Awtry, Nathan Fine, James Tomey, Britt Dinsdale, Jenn Atcheson, Erik Meuleman, Buz Brown NPPD: John Swanson, John Meacham, Bob Nitsch, Kirk Everett, Roman Estrada S&L: Krunal Patel, Emily Kunkel, John Spence, Kevin Lauzze KMPS: Paul Jaipersaud, Stan Lam, Tom Schafer Siemens: Joseph Williams, Robert Bailie

Department of Energy:

Katy Daniels, Jose Figueroa, Lynn Brickett, Bethan Young

Commercial Carbon Capture Design & Costing Study: Part 2 (C3DC2) DE-FE0031840

Commercial Carbon Capture Design & Costing Study: Part 2 (C3DC2) DE-FE0031840

				Half 2, 2019 Half 1, 2020 Half 2, 2020	Half 1, 2021
	Task Name	- Duration	🗕 Start 🚽	JASONDJFMAMJJASON	DJFMAMJ
1	C3DC2 Project - FEED Study	443 days	Mon 9/2/19		
2	1.0 Project Management and Planning	395 days	Mon 9/2/19	I	
19	2.0 Overall Project Design Basis	289 days	Thu 10/31/19	Г	
50	3.0 Process Design - CO2 Capture Island Design	257 days	Mon 9/30/19		
51	Preliminary Design - CO2 Capture Island	229 days	Mon 9/30/19		
102	M4: Preliminary Design Review	0 days	Fri 4/24/20	♦ 4/24	
103	Detailed Design - CO2 Capture Island	126 days	Thu 4/16/20		
135	4.0 Engineering & Design - Integration and BOP	286 days	Fri 12/20/19		
136	Detailed Design - Integration and BOP	286 days	Fri 12/20/19		
382	M5: Critical Design Review	0 days	Wed 9/16/20	♦ 9/16	
383	5.0 Studies and Investigation	281 days	Tue 12/3/19		
492	6.0 Cost Estimate	170 days	Tue 7/21/20	I I	
523	7.0 Reporting	75 days	Tue 2/23/21		