

### Energy Storage Integrated With Fossil Power Generation

#### NETL's Advanced Energy Storage Project Review Meeting

Dr. Andrew Maxson, Program Manager Electric Power Research Institute, Inc.

Monday, September 21, 2020



Image: marked black black

# **Energy Storage: Low-Carbon Tomorrow**

- Variable renewable energy (VRE) is projected to grow significantly to reduce carbon
- Energy storage will be needed to provide power when renewables cannot and grid stability:
  - 1-6 hours duration: Lower VRE, fossil use prevalent
    - Batteries (in front and behind meter)
  - 6-48 hours duration: Medium VRE, some fossil backup
    - Largely non-battery types, which in many cases can be integrated to fossil assets
  - Weekly or seasonal duration: High VRE
    - Low-carbon fuels, e.g., hydrogen

Dispatchable, reliable, safe, and cheap—and preferably synchronous

### Future modes of energy storage will be different









# **Comparison of Energy Storage Technologies**

Medium (M) OK High (H) Good

| Туре                   | Batteries |      | Thermal  |                 |                |      | Mechanical        |                    |               |                 | Chemical |          |
|------------------------|-----------|------|----------|-----------------|----------------|------|-------------------|--------------------|---------------|-----------------|----------|----------|
| Factor                 | Li-ion    | Flow | Concrete | Molten-<br>Salt | Pumped<br>Heat | Sand | Compressed<br>Air | Gravita-<br>tional | Liquid<br>Air | Pumped<br>Hydro | Ammonia  | Hydrogen |
| Cost                   | М         | L    | Н        | М               | Н              | Н    | М                 | М                  | Н             | Н               | L        | L        |
| Duration               | L         | М    | М        | М               | М              | М    | М                 | М                  | М             | н               | Н        | н        |
| Efficiency             | н         | Μ    | L        | L               | М              | L    | М                 | н                  | М             | Н               | L        | L        |
| Environmental          | L         | L    | М        | М               | Н              | Н    | Н                 | Н                  | Н             | L               | Н        | н        |
| Footprint              | М         | Н    | Н        | н               | Н              | Н    | М                 | М                  | Н             | L               | М        | L        |
| Inertia                | L         | L    | Н        | н               | М              | Н    | Н                 | L                  | Н             | н               | Н        | н        |
| Integrates with Fossil | L         | L    | н        | н               | L              | Н    | L                 | L                  | М             | L               | М        | М        |
| Maturity               | Н         | L    | М        | н               | L              | L    | Н                 | М                  | М             | Н               | L        | L        |
| 0&M                    | L         | L    | Н        | М               | М              | Н    | L                 | Н                  | М             | М               | L        | L        |
| Response Time          | Н         | Н    | М        | М               | М              | М    | М                 | н                  | М             | М               | L        | L        |
| Safety                 | L         | L    | Н        | М               | М              | Н    | М                 | н                  | Н             | М               | L        | L        |
| Scalability            | L         | М    | Н        | н               | Н              | Н    | Н                 | М                  | Н             | Н               | Н        | Н        |

### No energy storage technology is one-size fits all



# Concrete Thermal Energy Storage (TES)

- Solid 'thermocline' structure used to store thermal energy
- Modular system (12.5 m in length)
- Low-cost material: \$68/tonne
- \$687/kWe with \$400/kWe attainable

- Steam tubes embedded into concrete monoliths as coils—conduction only
- No moving parts
- Road/rail transportable
- DOE-funded 10-MWhe pilot demo led by EPRI at Southern's Plant Gaston





# **Costs and Benefits of Mid-Duration Energy Storage**

- #1 Question Asked by Industry: Will there be value for energy storage?
- For fossil-integrated energy storage, durations are up to 24–48 hours
- Costs for TES are much lower for these mid-durations compared to batteries—most of the cost is adding more cheap thermal media



 EPRI is currently performing benefit assessments, which show value for mid-duration energy storage if there is an ancillary services market (e.g., non-spinning/spinning reserves)—arbitrage alone is not enough

### As markets evolve (e.g., carbon pricing), value will continue to grow



#### Together...Shaping the Future of Electricity



