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Boundaries define the system, methodology defines the analysis

What is Systems Analysis (SA)
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Source: Drewien, Celeste A., Osborn, Thor D., and Hess, Marguerite Evelyn. Systems Analysis Overview.. United 

States: N. p., 2019. OSTI Identifier 1641663 



• Storage System Owner
• Generate revenue

– Energy arbitrage

– Expanded/enhanced service menu

• Enhance the value of existing assets

– Increased operational flexibility

– Decreased production costs

• Bulk Power System
• Address changing nature of generator base

– Increasing replacement of dispatchable with intermittent resources

• Maintain necessary level of critical grid services

– Reduction of existing base due to retirement of conventional generating 
resources

– Compensate for limitations in the “service menu” provided by asynchronous 
generating technologies 

Objectives are often a matter of Use Case and stakeholder perspectives

SA of Energy Storage (ES) Concepts
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Conventional dispatchable resources provide a “fuller” menu

Illustration of Varied “Service Menus”
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Source: Adapted from EPRI, Contributions of Supply and Demand Resources to Required Power System Reliability 
Services, 3002006400, May 2015

Dispatchable Intermittent



• Unit-Level
• Stand-alone electricity storage system 

• Integrated energy storage system

• Operationally integrated 

• Physically integrated

• Bulk Power System-Level
• Grid

• Stand-alone

• Integrated 

• Grid+ (i.e., Bulk power system plus co-
product markets) 

System boundaries and parameter granularity are key considerations

SA Scope a Function of ES Use Case  

5

The more relevant the desired analysis 
outcome, the higher the analysis complexity. 

For any analysis outcome to be meaningful, 
sufficient consideration must be given to 
determine the appropriate 
resolution/granularity of:

• Process performance

• Capital and operating costs 

• Products/services evaluated

• Locational specificity

• Supply (including competition) and demand 
(including alternatives)

• Supply chain

• Timescale

And more than likely many others …



Energy intensive processes provide multiple ES integration pathways

ES Integrated w/ Fossil-Fueled Power Plant
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Industrial processes offer similar (and maybe more) integration opportunities

Energy Intensive Industrial Processes
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Primary Product 
Market

(Demand, competition, 
regulations, policy, 

stakeholder interests, 
supply chain aspects)

Assessing Energy Storage Benefits
• Sub-system revenues, costs, reliability
• Integrated system benefits
• Stakeholder benefits
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“Other than electricity” ES pathways for fossil energy

Integration Options for Fossil Energy Systems
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Thermal Energy 
Storage
Integration of 

thermal storage at 
power plants for 

improved operations 
and/or increased 

power output during 
high-demand 

periods

Pilot projects 
underway for some 
technologies (e.g. 

concrete TES); 
Material testing and 

assessment of 
integration schemes 

necessary

Chemical 
Energy Storage

Integration of 
chemical storage 

with grid connected 
co-production (e.g., 
power & hydrogen) 
providing greater 

operational flexibility

Multiple product 
pathway options; 

e.g. H2; bulk storage 
and distribution in 

early development

Kinetic Energy 
Storage

Fossil or nuclear 
energy conversion 

paired with 
mechanical energy 

storage options

Standalone CAES 
has been 

commercialized, but 
not widely deployed; 
Other technologies 
are currently being 

developed (e.g. 
gravity-based 

options)

Operational 
Flexibility as 

Storage
Flexibility in facility 

operations to 
leverage energy 
stored within the 

system redirected to 
support the bulk 

power system

CCS technology 
demonstrated; 
flexible system 

design, control and 
optimization needed



Fossil based H2 production with carbon capture and storage

Low-Carbon Fossil Enabled Via Chemical ES
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Co-production of Power and 
Hydrogen from Natural Gas

Co-production of Power and 
Chemicals using Coal Gasification

Operational flexibility of CO2 capture system provides 
access to energy “stored” within the system
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Hydrogen Energy Storage is Highly Versatile 
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• The value of pairing energy storage (ES) with generation is less about the 
product(s) that it provides and more about the flexibility it enables

• Application dependent – ES enables/enhances flexibility attributes 
differently

• Spatially and temporally dependent – Heterogeneity of how energy is 
produced, delivered and consumed dictates the demand for and value 
of flexibility attributes

• Value Here ≠ Value There

• Value Now ≠ Value Then

Value is amorphous and ever changing

Energy Storage Valuation Conundrum
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Fossil Fueled EGU Attribute Enhancement Enhancement Opportunity

Energy arbitrage Low to High

Lower production cost and/or improved energy conversion efficiency Moderate to High

Expanded product slate Low to Moderate



ES offers a range of improvements, many of which are difficult to quantify

Quantifying Economic Benefits of Integrated ES
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Source: Estimated dispatch cost and chart compiled by NETL

• Integrated ES Offers Improved 
Unit-Level Economics Via

◦ Lower variable production cost 
leading to enhanced dispatch 
capture

◦ Decreased losses due to out-of-the-
market sales

― ES-enabled energy arbitrage

― Lower (or avoided) costs 
associated with taking unit off-line

◦ Lower maintenance costs due to 
decreased cycling of process 
components

Potential dispatch capture from coupling storage with generation 
could accrue by avoiding out-of-the money sales (and losses) 
and instead releasing the energy during more valuable periods.  
The example assumes 10% of unit capacity in coupled storage 
and energy total storage equivalent to 8 hours.



Primary Energy Storage Applications
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Source: Sandia National Laboratories, "DOE Global Energy Storage Database," Department of Energy, 2018. 
[Online]. Available: https://www.sandia.gov/ess-ssl/global-energy-storage-database/ [Accessed  April 2020].

In-front of the meter applications for select RTOs/ISOs


