COUPLED HYDROTHERMAL EXTRACTION AND LIGAND-ASSOCIATED SWELLABLE GLASS MEDIA RECOVERY OF RARE EARTH ELEMENTS FROM COAL FLY ASH

Timothy Dittrich¹, Matthew Allen², Sanjay Mohanty³, Hakim Boukhalfa⁴, Artaches Migdissov⁴, and Shawn McElmurry¹

¹Civil and Environmental Engineering – Wayne State University, Detroit, MI; ²Chemistry– Wayne State University, Detroit, MI; ³Civil and Environmental Engineering – University of California-Los Angeles; ⁴Earth System Observations – Los Alamos National Laboratory, Los Alamos, NM

PROJECT DESCRIPTION

This project will investigate the use of hydrothermal leaching under alkaline conditions to rapidly dissolve rare earth elements (REEs) from coal ash solids to an aqueous solution; transfer REEs from the solution to an Osorb platform (commercially available swellable organically modified silica) functionalized with the appropriate ligand system; and extract the REEs to an acidic aqueous system that will have high concentrations of the targeted REEs (2–10 percent by weight). The project will examine the potential to couple hydrothermal leaching of coal fly ash with a custom-engineered, ligand-associated media to provide an organic solvent-free method of extracting and recovering REEs. The fly ash feedstock will be collected from Detroit area coal-fired power plants, characterized for composition, and subjected to a bench-top batch hydrothermal leaching/dissolution process inside custom-built pressure reactors. Ligands known to be effective in lanthanide/actinide separation will be evaluated based on a series of criteria, such as selectivity and association to Osorb through hydrophobicity. Batch experiments will be conducted to establish the best conditions (e.g., pH, eluent, etc.) and best ligand systems for effectively extracting REEs from the alkaline feed solution obtained from the hydrothermal leaching process. Once the Osorb-ligand extraction system is optimized for REE concentration, a pH adjusted aqueous solution will be used to back-extract and concentrate the REEs into a heavily REE-laden solution.

OBJECTIVES

- 1) Hydrothermal extraction of REEs
- 2) Select lanthanide-specific ligands to associate with solid phase (organosilica)

3) Optimize attachment of ligands to the solid phase to allow for flow-through separations

4) Test pH conditions for back-extraction

5) Evaluate resilience of material through cvcling

Task	6 months	12 months	18 months	
1				
2	Hydrothermal extraction			
3	Ligand selection			
4	Ligand a	attachment to OSORB		
5	Evaluate REE sorption			
6		Evaluate REE Recovery from solid phase		
7	Model ligand-OSORB-REE system components			

PRELIMINARY RESULTS

Tasks 4-6) Ligand attachment and metal ion sorption

- Swellable organically modified silica (SOMS)

- Can accumulate >4x mass in nonpolar ligands (Edmiston and Underwood, 2009)
- □ Tri-butyl phosphate (TBP-associated Osorb)
- **D** Similar behavior to liquid/liquid extraction

FUTURE MILESTONES

4 6 8 10 Nitric Acid Concentration in M

-Successful strip/cycle

-94% recovery from 1000 ppm U

Milestone	Quantitative	Planned	Investigator
	Measurement	Completion Date	
Obj. 1. Establish	> 300 ppm T-REEs in	8/15/2018	Boukhalfa &
feasibility of	hydrothermal extraction		Migdissov
hydrothermal extraction	liquid		
Obj. 2.	Two commercial ligands are	8/15/2018	Allen
Select/characterize two	>99% pure to identity		
commercial ligands			
Obj. 3. Load ligands to	Achieve surface coatings of	12/1/2018	Dittrich
Osorb platform	\sim 50% by wt with first 2		
	ligands		
Obj. 4. Successful test	Achieve >95% sorption of	4/1/2019	Mohanty
of ligand-Osorb system	REEs from extraction liquid		
with 2 commercial	(by mass)		
ligands			
Obj. 5. Successful pH-	Recover minimum of 2wt%	8/1/2019	Dittrich
optimized strip with 2	T-REE concentrate		
commercial ligands			
Obj. 6. Successful	List of modeled/calculated	9/1/2019	McElmurry
modeling of the ligand-	system		
Osorb-REE system	parameters/coefficients		

ACKNOWLEDGEMENTS

DOE/NETL Award #FE-0031565