Concentrating Rare Earth Elements in Acid Mine Drainage Using Coal Combustion By-products through Abandoned Mine Land Reclamation

Chin-Min Cheng, Tarunjit Butalia, Jeff Bielicki, John Lenhart **Department of Civil, Environmental, and Geodetic Engineering**

Two-Step Process

Recover rare earth elements in acid mine drainage (AMD) using stabilized flue gas desulfurization material (sFGD)

AMD from Unreclaimed AMLs

Historical environmental problem

□ Over 6,000 recorded abandoned underground mines and 119,000 acres of unreclaimed surface mined lands in Ohio

□ Approximately 1,200 miles of streams are adversely impacted by acid mine drainage (AMD) from abandoned mine lands (AMLs) □ About 4,000 miles of streams in the Appalachian Region

□ Between 5,000 to 10,000 miles of streams in the western US regions

AML Reclamation 2.0

Spent sFGD Material

Concentrating recovered REEs using a selective extraction process to produce feedstock with >2wt.% T-REEe

Reclaiming AMLs faces significant financial challenge

Using CCRs in AML Reclamation

Office, Ohio Dept. Natural

Resources, and American

Full-scale demonstration

□ Over 1.8 million tons of FGD

gypsum, sFGD, and fly ash

Environmental monitoring has

years and is on going

□ Cheng et al. (2016)

been carried out for over seven

Electric Power

project

Using sFGD in Reclamtion of AMD-producing AML

Potential of using sFGD material to reclaim AMD producing AMLs □ High Alkalinity Low permeability Combining source control and passive

Minespoil Bedrock

overburde

Tasks

TRL-3

Carry out analytical and laboratory-scale studies to validate the proposed process

- Conducting column tests to maximize the retention of rare earths in sFGD
- □ Analyze the mineral and elemental compositions of the spent sFGD
- □ Apply sequential extraction to concentrate REE in spent sFGDs

Integrate basic technological components for next phase pilotscale study

- □ Field Investigation
- □ Techno-economic analysis and lifecycle assessment for full-scale applications
- □ Propose potential site for pilot-scale Study

Current Progress

TRL-4

Collaborate with ODNR and select over 20 AMD discharges □ Most from underground mines □ Coal Seams #4a- #9

Unit mass of material

REE precipitates with insoluble fraction

treatment approaches

Laboratory Testing

			<i>C</i> =	2			
		sFGD	∽outlook	, D S	ludge		Coal Ash
	S-20 (L/S=20,Bench)	S-21 (L/S=30, Bench)	S-8 (L/S=147, Column)	Site A	Site B	US Coal	Appalachian Basin Coal
Ce Cerium	18.9 ± 0.4	23.2 ± 0.4	139 ± 7	26.0	160.0	21	192.09
Dy Dysprosium	0.56 ± 0.10	0.7 ± 0.2	27.8 ± 1.7	9.0	34.0	1.9	16.41
Er Erbium	2.7 ± 0.2	3.07 ± 0.13	15.1 ± 0.9	5.0	19.0	1.0	9.46
Eu Europium	0.27 ± 0.06	0.35 ± 0.04	7.3 ± 0.4	2.0	6.0	0.4	3.55
Gd Gadolinium	4.6 ± 0.3	5.21 ± 0.15	44 ± 3	9.0	34.0	1.8	18.43
Ho Holmium		0.05 ± 0.11	2.5 ± 0.2	2.0	7.0	0.35	3.34
La Lanthanum	8.5 ± 1.1	10.1 ± 1.2	39 ± 3	8.0	59.0	12	89.46
Lu Lutetium	0.27 ± 0.08	0.15 ± 0.03	1.48 ± 0.05	0.6	2.0	0.14	1.25
Nd Neodymium	11.0 ± 0.4	12.4 ± 0.9	113 ± 7	16.0	90.0	9.5	82.93
Pr Praseodymium	17 ± 7	19 ± 8	53 ± 8	3.0	19.0	2.4	21.62
Sc Scandium	3.781 ± 0.018	4.63 ± 0.10	7.3 ± 0.4	6.0	9.0	4.2	38.47
Sm Samarium	3.93 ± 0.05	5.5 ± 0.5	37.9 ± 1.6	5.0	23.0	1.7	17.66
Tb Terbium	1.1 ± 0.2	1.1 ± 0.2	7.2 ± 0.4	2.0	6.0	0.3	2.81
Tm Thulium			0.73 ± 0.04	0.6	2.0	0.15	1.35
Y Yttrium	7.43 ± 0.11	9.1 0.3	132 ± 9	54	230.0	8.5	95.37
Yb Ytterbium	1.461 ± 0.003	1.70 ± 0.09	9.0 ± 0.6	4.0	14.0	0.95	8.37
T-REEe	83 ± 7	97±11	650 ± 50	152.2	714	66.3	602.6

 $C_{outlook} = (Nd + Eu + Tb + Dy + Er + Y)/(Ce + Ho + Tm + Yb + Lu)$

AMD Sites Potential Sites for Field Investigation	Clevelapd	Land the second
	Akron Paston	Youngstown Mill Creek
The former of the second secon	Mansfield Sur	
Springfield Columbus	White Eyes Creek Piedmont/Lick R	Leittle Short Creek
	Rush Greek Moxahala Sunday-Creek Monday-Creek Sunday-Creek	Morgantown
For the second s		my & Ju
Raccoon Creek	Thomas Fork	
Google Earth Nge Landsat / Copernicus 2018 Google		

Field Investigation

□ Collecting AMD samples from discharging points

□ Measuring flow rates

Samples are analyzed by OSU's STAR lab and TERL.

Column Test AMD with high recovery potential □ At least two sFGD materials

Objectives

- Validate the effectiveness and feasibility of the integrated rare earth recovery/ concentrating process
- Determine mechanisms controlling the rare earth recovery
- Quantify the associated economic and environmental benefits
- Evaluate the full-scale application

sFGD Material

■ Hannebachite (CaSO₃ 0.5 H₂O); Portlandite (Ca(OH)₃); Hematite (Fe₂O₃); Magnetite (Fe₃O₄); Quartz (SiO₂); Mullite (3Al₂O₃ 2SiO₂); and Maghemite (Fe₂O₃)

			sFGD Material	
Mercury	Hg	μg/kg	318	
Phosphorus	Ρ	mg/kg	228	
Potassium	К	mg/g	1.43	
Calcium	Са	mg/g	166	
Magnesium	Mg	mg/g	9.83	
Sulfur	S	mg/g	108	
Aluminum	Al	mg/g	12.3	
Boron	В	mg/kg	290	
Copper	Cu	mg/kg	< 0.5	
Iron	Fe	mg/g	39.7	
Manganese	Mn	mg/kg	58	
Molybdenu	Мо	mg/kg	3.51	
Sodium	Na	mg/g	5.4	
Zinc	Zn	mg/kg	34.8	
Arsenic	As	mg/kg	23.8	
Barium	Ba	mg/kg	168	
Beryllium	Be	mg/kg	< 0.11	
Cadmium	Cd	mg/kg	0.803	
Cobalt	Со	mg/kg	8.10	

	55	
Lithium Li	mg/kg	133
Nickel Ni	mg/kg	18.6
Lead Pb	mg/kg	6.05
Antimony Sb	mg/kg	4.33
Selenium Se	mg/kg	<3
Silicon Si	mg/g	0.25
Strontium Sr	mg/kg	248
Thallium Tl	mg/kg	44.3
Vanadium V	mg/kg	<1.2
ecimal percent of total by dry	%	60.4
4	S.U.	9.7
ydrogen ion concentration	mole/L	1.99x10 ⁻¹⁰
ritic sulfur	%	0.07
tal sulfur	%	14.27
otential acidity	tons of CaCO ₃ per 1000 tons	2.2
eutralization potential	tons of CaCO ₃ per 1000 tons	84.77
alcium carbonate deficiency	tons of CaCO ₃ per 1000 tons	-82.57

2 theta

