Concentrating Rare Earth Elements in Acid Mine Drainage Using Coal Combustion By-products through Abandoned Mine Land Reclamation

Chin-Min Cheng, Tarunjit Butalia, Jeff Bielicki, John Lenhart
Department of Civil, Environmental, and Geodetic Engineering

Two-Step Process
- Recover rare earth elements in acid mine drainage (AMD) using stabilized flue gas desulfurization material (sFGD)
- Concentrating recovered REEs using a selective extraction process to produce feedstock with >2wt.% T-REEe

AMD from Unreclaimed AMLs
- Historical environmental problem
 - Over 6,000 recorded abandoned underground mines and 119,000 acres of unclaimed surface mined lands in Ohio
 - Approximately 1,200 miles of streams are adversely impacted by acid mine drainage (AMD) from abandoned mine lands (AMLs)
 - About 4,000 miles of streams in the Appalachian Region
 - Between 5,000 to 10,000 miles of streams in the western US regions
- Reclaiming AMLs faces significant financial challenge

Using CCRs in AML Reclamation
- Ohio Coal Development Office, Ohio Dept. Natural Resources, and American Electric Power
- Full-scale demonstration project
 - Over 1.8 million tons of FGD gypsum, fGD, and fly ash
 - Environmental monitoring has been carried out for over seven years and is on going
 - Cheng et al. (2016)

Using sFGD in Reclamation of AMD-producing AML
- Potential of using sFGD material to reclaim AMD producing AMLs
 - High Alkalinity
 - Low permeability
 - Combining source control and passive treatment approaches

Laboratory Testing
- Conducting column tests to maximize the retention of rare earths in sFGD
- Analyze the mineral and elemental compositions of the spent sFGD
- Apply sequential extraction to concentrate REE in spent sFGD

Current Progress
- Collaborate with ODNR and select over 20 AMD discharges
 - Most from underground mines
 - Coal Seams #4a & #9

Tasks
- Carry out analytical and laboratory-scale studies to validate the proposed process
- Conducting column tests to maximize the retention of rare earths in sFGD
- Analyze the mineral and elemental compositions of the spent sFGD
- Apply sequential extraction to concentrate REE in spent sFGDs
- Integrate basic technological components for next phase pilot-scale study
- Field Investigation
 - Techno-economic analysis and life-cycle assessment for full-scale applications
 - Propose potential site for pilot-scale study

SFGD Material
- Hanabachite (Ca$_{x}$Si$_{y}$O$_{z}$H$_{2}$O$^{2-}$)
- Portlandite (CaOH$_{2}$)
- Hematite (Fe$_{2}$O$_{3}$)
- Quartz (SiO$_{2}$)
- Mullite (3Al$_{2}$O$_{3}$·2SiO$_{2}$)
- and Maghemite (Fe$_{3}$O$_{4}$)

Two-Step Process

Recover rare earth elements in acid mine drainage (AMD) using stabilized flue gas desulfurization material (sFGD)

Using sFGD in Reclamation of AMD-producing AML

Potential of using sFGD material to reclaim AMD producing AMLs
- High Alkalinity
- Low permeability
- Combining source control and passive treatment approaches

Using CCRs in AML Reclamation
- Ohio Coal Development Office, Ohio Dept. Natural Resources, and American Electric Power
- Full-scale demonstration project
 - Over 1.8 million tons of FGD gypsum, fGD, and fly ash
 - Environmental monitoring has been carried out for over seven years and is on going
 - Cheng et al. (2016)

Objectives
- Validate the effectiveness and feasibility of the integrated rare earth recovery/concentrating process
- Determine mechanisms controlling the rare earth recovery
- Quantify the associated economic and environmental benefits
- Evaluate the full-scale application

Tasks
- Carry out analytical and laboratory-scale studies to validate the proposed process
- Conducting column tests to maximize the retention of rare earths in sFGD
- Analyze the mineral and elemental compositions of the spent sFGD
- Apply sequential extraction to concentrate REE in spent sFGDs
- Integrate basic technological components for next phase pilot-scale study
- Field Investigation
 - Techno-economic analysis and life-cycle assessment for full-scale applications
 - Propose potential site for pilot-scale study

Current Progress
- Collaborate with ODNR and select over 20 AMD discharges
 - Most from underground mines
 - Coal Seams #4a & #9

Two-Step Process

Recover rare earth elements in acid mine drainage (AMD) using stabilized flue gas desulfurization material (sFGD)

Using sFGD in Reclamation of AMD-producing AML

Potential of using sFGD material to reclaim AMD producing AMLs
- High Alkalinity
- Low permeability
- Combining source control and passive treatment approaches

Using CCRs in AML Reclamation
- Ohio Coal Development Office, Ohio Dept. Natural Resources, and American Electric Power
- Full-scale demonstration project
 - Over 1.8 million tons of FGD gypsum, fGD, and fly ash
 - Environmental monitoring has been carried out for over seven years and is on going
 - Cheng et al. (2016)

Objectives
- Validate the effectiveness and feasibility of the integrated rare earth recovery/concentrating process
- Determine mechanisms controlling the rare earth recovery
- Quantify the associated economic and environmental benefits
- Evaluate the full-scale application

SFGD Material
- Hanabachite (Ca$_{x}$Si$_{y}$O$_{z}$H$_{2}$O$^{2-}$)
- Portlandite (CaOH$_{2}$)
- Hematite (Fe$_{2}$O$_{3}$)
- Quartz (SiO$_{2}$)
- Mullite (3Al$_{2}$O$_{3}$·2SiO$_{2}$)
- and Maghemite (Fe$_{3}$O$_{4}$)

Two-Step Process

Recover rare earth elements in acid mine drainage (AMD) using stabilized flue gas desulfurization material (sFGD)

Using sFGD in Reclamation of AMD-producing AML

Potential of using sFGD material to reclaim AMD producing AMLs
- High Alkalinity
- Low permeability
- Combining source control and passive treatment approaches

Using CCRs in AML Reclamation
- Ohio Coal Development Office, Ohio Dept. Natural Resources, and American Electric Power
- Full-scale demonstration project
 - Over 1.8 million tons of FGD gypsum, fGD, and fly ash
 - Environmental monitoring has been carried out for over seven years and is on going
 - Cheng et al. (2016)

Objectives
- Validate the effectiveness and feasibility of the integrated rare earth recovery/concentrating process
- Determine mechanisms controlling the rare earth recovery
- Quantify the associated economic and environmental benefits
- Evaluate the full-scale application

SFGD Material
- Hanabachite (Ca$_{x}$Si$_{y}$O$_{z}$H$_{2}$O$^{2-}$)
- Portlandite (CaOH$_{2}$)
- Hematite (Fe$_{2}$O$_{3}$)
- Quartz (SiO$_{2}$)
- Mullite (3Al$_{2}$O$_{3}$·2SiO$_{2}$)
- and Maghemite (Fe$_{3}$O$_{4}$)

Two-Step Process

Recover rare earth elements in acid mine drainage (AMD) using stabilized flue gas desulfurization material (sFGD)

Using sFGD in Reclamation of AMD-producing AML

Potential of using sFGD material to reclaim AMD producing AMLs
- High Alkalinity
- Low permeability
- Combining source control and passive treatment approaches

Using CCRs in AML Reclamation
- Ohio Coal Development Office, Ohio Dept. Natural Resources, and American Electric Power
- Full-scale demonstration project
 - Over 1.8 million tons of FGD gypsum, fGD, and fly ash
 - Environmental monitoring has been carried out for over seven years and is on going
 - Cheng et al. (2016)

Objectives
- Validate the effectiveness and feasibility of the integrated rare earth recovery/concentrating process
- Determine mechanisms controlling the rare earth recovery
- Quantify the associated economic and environmental benefits
- Evaluate the full-scale application

SFGD Material
- Hanabachite (Ca$_{x}$Si$_{y}$O$_{z}$H$_{2}$O$^{2-}$)
- Portlandite (CaOH$_{2}$)
- Hematite (Fe$_{2}$O$_{3}$)
- Quartz (SiO$_{2}$)
- Mullite (3Al$_{2}$O$_{3}$·2SiO$_{2}$)
- and Maghemite (Fe$_{3}$O$_{4}$)