

Small-Scale Engineered High Flexibility Gasifier

Santosh Gangwal, PhD1, Ken Jeffers, PE1, Kevin McCabe1, Andrew Muto, PhD1, Patrick Woolcock, PhD1, Hong-Shig Shim, PhD2, Martin Denison, PhD2, Kevin Davis, PhD2, Jost Wendt, PhD2, Ravi Randhava, PhD3, and Richard Kao, PhD3 ¹Southern Research, Birmingham AL, ²Reaction Engineering International, Murray, UT, and ³Unitel Technologies, Mount Prospect, IL

Project Objectives

GOALS

- Develop small-scale coal gasifier featuring
 - High pressure, oxygen-blown operation
 - Standardized modular construction
 - Fuel flexibility for coal, biomass, MSW
- Conduct pilot demonstration of design

IMPACT

- · Benefits of final gasifier design
 - Mitigates/reforms tars
 - Can be scaled-down cost-effectively
- Applicable to 1–5 MW modular, energy conversion system e.g. CHP

Technical Approach

- Computational modeling to optimize design
- Laboratory testing to obtain model inputs
 - Chars produced at relevant conditions
 - Gasification reactivity characterization
- Design & construct 25-50 lb/hr pilot-scale gasifier based on modeling results
- · Commission & test pilot gasifier, update CFD
- Design 1–5 MW energy conversion system

State of the Art Gasifier Technology

Processes & Transformations

- Fuel drying
- Pyrolysis release of volatile matter, fuel to char conversion
- Combustion burning of volatiles and some char. releases heat
- Gasification conversion of char to syngas, absorbs heat

Chemical Reactions

 $C + O_2 \rightarrow CO_2$ Combustion $C + CO_2 \rightarrow 2CO$ CO2-gasification $C + H_2O \rightarrow CO + H_2$ Steam-gasification $C + 2H_2 \rightarrow CH_4$ Hydrogasification $CO + H_2O \rightarrow H_2 + CO_2$ Water-gas shift

Feedstock Selection

- PRB Coal (Preferred)
- Lignite
- · Flexibility for biomass, MSW

Challenges to Overcome

- Undesired by-products tars
- Operational complexity
- · Difficulty to cost-effectively scale-down

Computational Modeling

Two-stage Modeling Approach

Zonal Process Model

To establish initial process parameters

CFD Model

- Porous-media CFD approach
- To explore multi-dimensional mixing effect

Model Inputs and Outputs

Model Inputs

- Coal properties
- Coal devolatilization behavior
- · Char reaction kinetics
- Geometry
- · Operating conditions
- · Boundary conditions

Model Outputs

- Steady state conditions: · Syngas make and
- composition
- Char/ash make
- Red dimensions
- Heat losses
- System efficiency

Analytical Methods

Thermal Gravimetric Analysis (TGA)

- Proximate analysis
- Pyrolysis and char gasification kinetics

Char Production Reactor

- Simulated coal pyrolysis
- Samples for reactivity tests

TPR/TPD, BET

N₂ and CO₂ surface area, pore structure

Project Pathway

Acknowledgement

This work is supported by the U. S. Department of Energy – National Energy Technology Laboratory, Office of Fossil Energy Cooperative Agreement No. DE-FE0031531 Diane Madden, Program Manager

Project Tasks

- 1.0 Project Management
- 2.0 CFD Model Development
- Select fuels, acquire samples
 - Test plan for fuel/char characterization
- Computationally optimized design
- 3.0 Gasifier Design, Construction & Testing
- Engineering design of pilot gasifier skid
- Construct & commission gasifier skid
- 4.0 Commercial System Modeling & TEA
 - Validate CFD Model
 - Conceptual design of 1–5 MW system