Fabrication of Extreme Environment Materials for Large Parts Using Additive Manufacturing Methods

Jiwen Wang¹, Rainer Hebert,² Xu Chen,² and Jim Steppan^{1*}

1. HiFunda LLC; * jsteppan@hifundallc.com; 2. University of Connecticut **DOE SBIR Grant # DE-SC0017759; DOE Project Manager: Karol Schrems**

AM Process Development for High Temperature Superalloy IN939 Design of Large-Area Selective Laser Melting (LASLM) Develop In-situ Microstructure and Mechanical Property Enhancement Process for SLM

The Challenge/Opportunity

AM Process Optimization of High

Microstructure and Hardness of AM

- AM process using high temperature superalloys for engine components is needed
- Few AM options exist for large metallic components
- Improved quality, microstructure, and mechanical properties of AM parts is needed

Project Objective and Benefits

- Develop AM process for IN939
- Design cost-efficient large area selective laser melting system (LASLM)
- Develop In-situ microstructure and mechanical property control for AM process

Temperature Materials (IN939)

IN939 powder and size distribution

A commercial 3DSystems ProX300 machine was used to develop machine parameters to yield dense parts with the IN939 powder.

IN939 samples

SEM and EBSD of SLM IN939 sample

Sample	Average HV	STD
1	360	15
2	365	8
3	364	8
4	361	15
5	367	8
	Immary of a /ickers harc	•

Generic nozzle guide vane ring with internal cooling, 180 mm diameter.

AM Demonstration of IN939 engine component

In-situ Microstructure and Mechanical Property Optimization

Schematic of Selective Area Forging and machine setup

0.5 mm

2 mm

SAF Pattern

9 🐡 🐡 🍣

Stacking-fault-like

sliding bands

microstructure

Severe plastic deformation and defects were introduced by Selective Area Forging (SAF)

	Overall PV (Peak to Valley)	
	Average (µm)	St Dev
Sharp Tip (0.5 mm)	18.3304	2.351383
Sphere Tip (2 mm)	7.5	1.12867

Schematic of LASLM

Design leverages current in-house

Designed large-area

system with:

motion stage

selective laser sintering

• 15"×15"×12" build volume

• Complementary Cartesian

Slicing and 2D sintering software

- **Completed the design of a** cost-efficient LASLM and the demonstration of a smallscale system.
- **Evaluated the feasibility of** in-situ microstructure and mechanical property optimization using selective area forging (SAF).

Milestone Status

- **Completed IN939 process** optimization using commercial SLM system (Jan. 2018)
- **Completed machine design of**

designed, deployed, and successfully

