Development of a Highly Efficient Membrane-Based Wastewater Management System for Thermal Power Plants

Xiao Wang, Palitha Jayaweera, Elisabeth Perea, Richard Callahan, and Indira Jayaweera*

Summary: The main goal of the proposed research is to introduce SRI-based polybenzimidazole (PBI) hollow-fiber membranes (HFMs) for flue gas desulfurization (FGD) wastewater (WW) treatment and Selenium (Se) release control. The PBI membranes are resistant to fouling and can be operated under substantially harsher conditions than those tolerated by commercial membranes. Success of this project will result in an effluent control system that reduces freshwater withdrawal by removing hazardous compounds and reusing the recovered water. **Contact:** Indira S. Jayaweera, Sr. Staff Scientist/Sr. Program Manager, indira.jayaweera@sri.com, +1-650-859-4042

of exhausted absorbents

PBI HFM

Our Approach

The main goal is to develop innovative effluent water management practices at coal-fired energy plants; we will also:

• Test the SRI seawater desalination PBI hollow-fiber membranes (HFMs) for separating sulfates and selenium from an FGD WW simulant and then from real-world FGD WW. •Use the data to design and model the optimized membrane unit arrangement for reduced energy operation. • Fabricate high-strength PBI HFMs suitable for processing highsalinity (high-osmotic pressure) brines at an industrial site.

Project Budget and Team		Reverse Osmosis (RO) Technology	Hollow-fiber vs. Spiral-wound Membranes	
Cooperative agreement grant with U.S. DOE: - Contract No. DE-FE0031552 Period of Performance: - 12/19/2017 – 06/18/2020 Funding: - U.S. Department of Energy: \$639,949 - Cost share: \$160,000 - Total: \$799,949 NETL Project Manager: - Anthony Zinn: anthony.zinn@netl.doe.gov Principal Investigator: - Indira Jayaweera: indira.jayaweera@sri.com		Pressure Feed solution	Hollow-fiber Membrane	Spiral-wound Flat-sheet Membrane
		Semipermeable membrane Permeate solution http://diagram.premamaz.com/reverse-osmosis-diagram/	SRI PBI module J. Membr. Sci. 362 (2010), 202-210 Advantages of Hollow-fiber Membranes No need for spacers Self-supporting structure Able to permeate channel High surface area per unit of membrane module volume: spiral-wound packing density is 800 m²/m³ while hollow fiber is 6000 m²/m³ (reported by Lux Research, Inc.)	
		 Pressure driven process (200-1000 psi) to overcome osmosis pressure Solution diffusion mechanism: RO membrane is assumed to be nonporous, and transport is by diffusion between the interstitial space of polymer chains or polymer podulos. 	PBI vs. Other Membrane Materials	
 NETL Funding and technology oversight SRI PBI membrane development Membrane testing Enerfex, Inc. 	 PBI Performance Products, Inc. PBI dope source Generon, IGS Membrane fabrication site OLI Systems Optional partner 	 Donnan effect: works in charged membranes Reverse osmosis is the best known method for removing dissolved hardness 	MaterialsPropertyPBISuperior thermal stability: Tg=450°C, degradation at 450°C in air, continuous operating temperature up to 250°CHigh mechanical strengthOutstanding chemical resistanceExcellent chlorine resistance.Excellent chlorine resistance.Cellulose TriacetateLow thermal resistance (<30°C)	Fire Mater. 26(2002),155- 168 PBI molecular structure 2-8) Desalination 326(2013), 79-95

Two Different Types of Hollow-fiber Membranes (HFMs) and Their Performance

Membrane Separation Based on Polybenzimidazole Hollow-fiber Membranes (PBI HFMs)

Fabrication of Polybenzimidazole Hollow-fiber Modules

Conclusions

- Both operational cost and energy consumption will be significantly decreased by the use of reverse osmosis (RO) technology in flue gas desulfurization wastewater (FGD WW) management approaches.
- Among the existing technologies, membrane separation, especially using RO, is the most promising way to remove Se and other heavy metals in FGD WW.
- ***** The hollow-fiber (HF) format reduces membrane module size and operational cost relative to spiral-wound membranes.
- Inside-out HF can provide both high flux and rejection comparable to that of commercial flatsheet membranes.
- ✤ Outside-in HF can tolerate harsh operating conditions, and its separation performance is

Acknowledgements

The authors wish to acknowledge:

- The DoE Project Manager
- The SRI Team and Partners
- The DoE for current funding (DE-FE0031552)
- Previous Funding from, the KACST, Riyadh, National Energy Technology Laboratory (NETL) of the U.S. Department of Energy (Contract No. DE-FE0012963), and the Office of Naval Research (ONR) of the US Department of Defense (Contract No. N00014-10-C-0059).

This poster includes an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.