

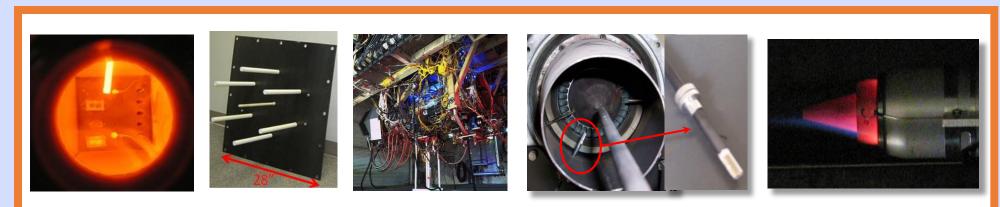
Motivation

- Usage of Harsh-Environment (HE) High-Temperature (HT) Wireless Surface Acoustic Wave (SAW) Sensor Technology to:
 - ✓ ↑ Reliable maintenance through CBM of critical coal-based power plant equipment
 - ✓ ↑ Cost-effective efficiency of power plant operations
 - ✓ ↑ Power Plant Safety
- THE/HT Wireless SAW Sensor Technology **Readiness Level (TRL) via test & implementation**

OBIECTIVES

- > HE/HT Wireless Surface Acoustic Wave (SAW) **Temperature Sensors** → **CBM in Coal Power Plants**
- > Improvement in the packaging of SAW temperature sensors & antennas
- Advancement in piezoelectric films and strain sensors
- > Wireless communication protocols & signal processing refinements
- > Technology validation and transition to coal-based power plants

TECHNOLOGY MATURATION OF WIRELESS HARSH-ENVIRONMENT SENSORS FOR IMPROVED CONDITION-BASED MONITORING OF COAL-FIRED POWER GENERATION


Surface Acoustic Wave (SAW) Technology

- **Electronic platform: electrical signal translated into** microwave acoustics using a piezoelectric substrate
- **Delay line and resonators: typical SAW structures used for** sensor applications
- Interdigitated transducers (IDTs) used for wave generation; reflector electrodes used for acoustic wave energy trapping

- **Typical operating features:**
 - ✓ $v_p \approx 3.10^3$ m/s << c= 3.10⁸ m/s (5 order of mag. ⇒ size ↓)
 - ✓ Frequency range: ~50 MHz to a few GHz (range determined by size & lithography)
 - ✓ Respective λ (v_p = λ . F) \Rightarrow from 60µm to 1.5µm
 - \Rightarrow minimum feature size $\rightarrow \lambda/4 \rightarrow \sim 15 \mu m$ to 0.4 μm
- Low cost in high volume production
- **Reproducible manufacturing based on semiconductor** fabrication capabilities

SAW Sensors in Harsh Environments

- SAW technology can be used to measure a variety of sensor parameters: temperature, pressure, torque, strain, gas
- Small sensor footprint
- Varying detection mechanisms: loading, absorption, stress, changes in film thickness or material properties
- Existence of substrates for high temperature applications, such as the langasite (LGS)

Complexity

M. Pereira da Cunha^{1, 2}, R. J. Lad^{1, 2}, G. Harkay², A. Maskay^{1, 2} ¹University of Maine, Orono, Maine, U.S.A ²Environetix Technologies Corporation, Orono, Maine, U.S.A.

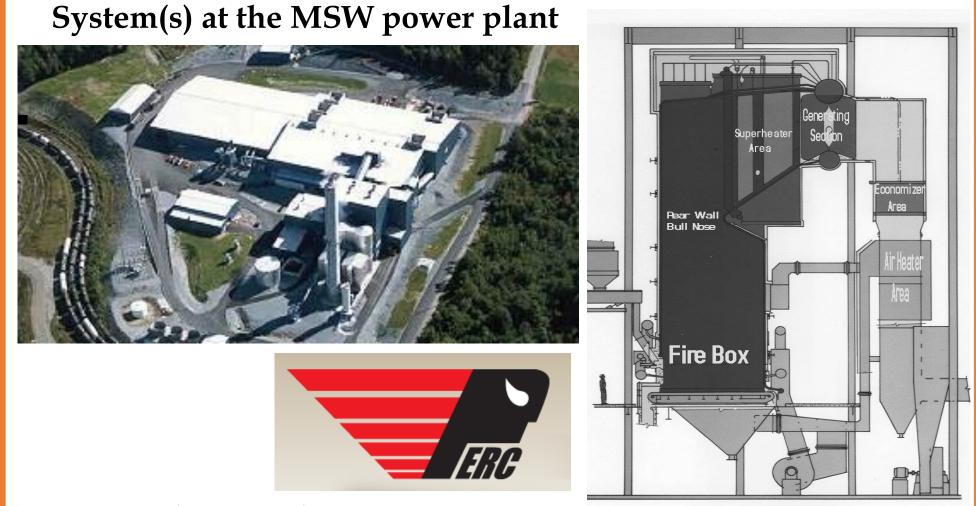
Class of Micromechanical Systems (MEMS)

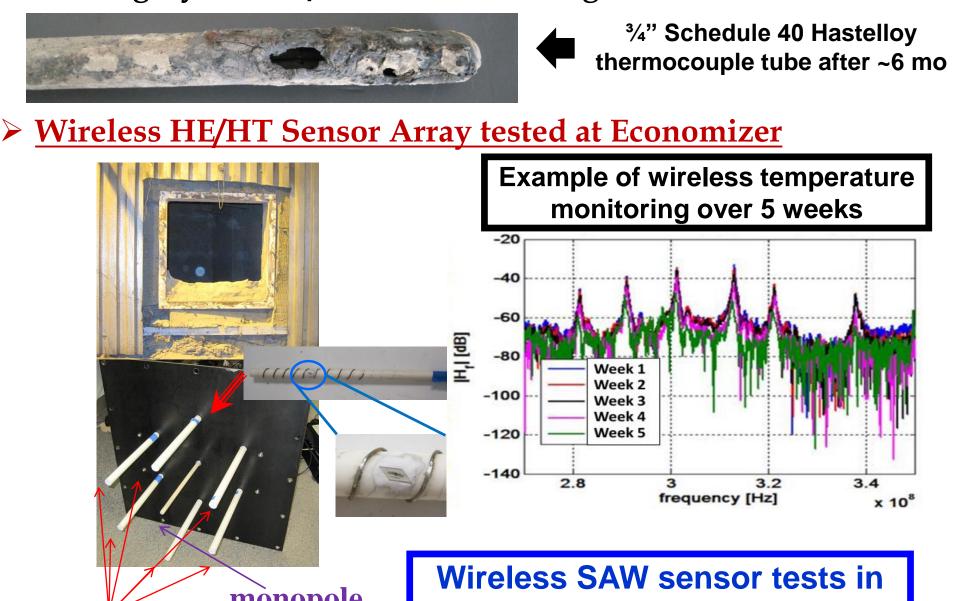
SAW Sensor

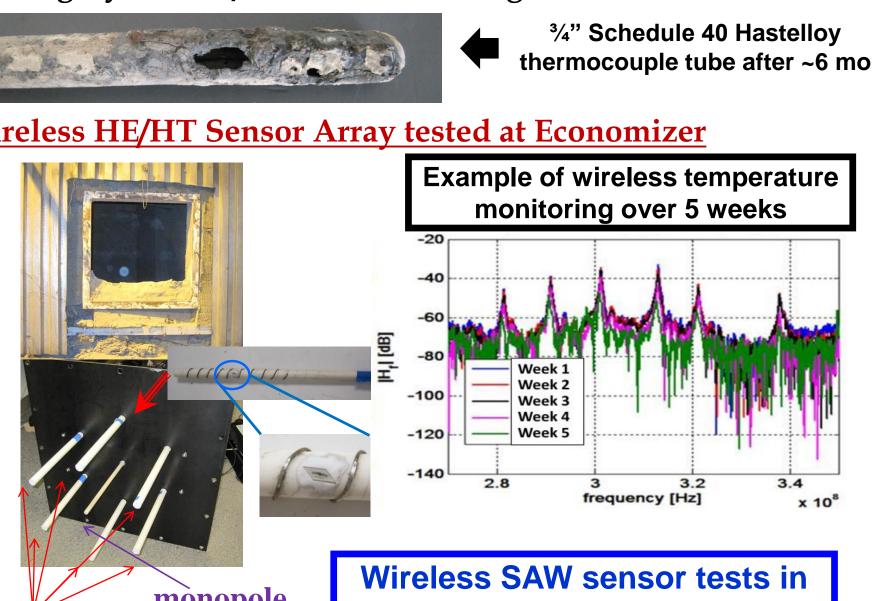
Robust and stable over long-term

✓ LGS : 1470°C Melting point

Advantages of SAW Sensors: Wireless, battery-free, robust, passive operational

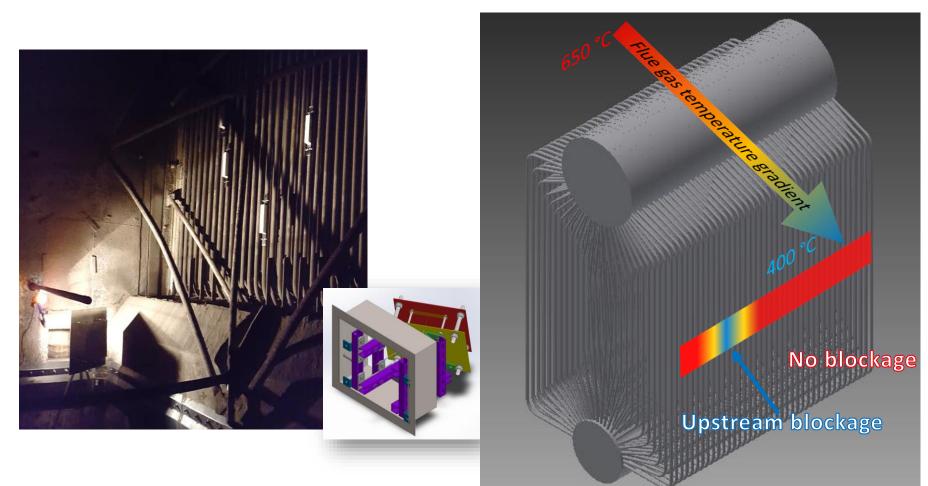

capability leading to reduced installation & maintenance cost


UMaine/Environetix Previous Experience


Collaboration with Penobscot Energy Recovery Company (PERC) Power Plant in Orrington, ME

- **PERC** → Municipal Solid Waste (MSW) Power Plant

Power plant conditions: ✓ Temps ↑ 900°C (1650°F) ✓ Highly erosive/corrosive exhaust gases



mònopole **6 dipoles + interrogating** SAW Sensors antenna

Wireless HE/HT Sensor Array tested in Boiler

- > PERC Indicated the need for:
 - ✓ Placement of sensor array on Boiler tubes for CBM

\succ Goal \rightarrow Implement a Wireless Temperature Monitoring

power plant harsh environment carried out over 2 years

✓ Locate blockage → optimally aim steam/soot blowers

Project Structure & Implementation

Project Tasks:

- ✓ TASK 1 Project Management & Planning
- ✓ TASK 2 Technology Transition & Adaptation: High **Temperature Wireless SAW Sensor Technology in** Harsh Coal-fired Power Plant Environments
- ✓ TASK 3 Implementation and Testing of Mature **Prototype Wireless Sensor System within Power Plants**
- ✓ TASK 4 Protective Coatings and Piezoelectric Thin Films for Improved Sensor Packaging & Performance
- ✓ TASK 5 Development of Prototype SAW-based Strain

Sensor		
Milestone	Planned Completion	Milestone Title
M1	1 st quarter of Year 1	Kick-off Meeting with DOE / NETL
M2	4 th quarter of Year 1	Definition of Target Locations to I Wireless HE SAW Sensor System
M3	1 st quarter of Year 2	Wireless Communication Plannin
M4	3 rd quarter of Year 2	Fabrication of Prototype Wireless System
М5	4 th quarter of Year 2	Installation of Specific Prototype Identified Power Plant Locations
M6	1 st quarter of Year 3	Testing of Specific Prototype Sen Identified Power Plant Locations
М7	4 th quarter of Year 3	Refinement of Sensor System Per Additional Testing
M8	1 st quarter of Year 3	Identification of the Best Thin Film Coatings for Packaging of Sensor Environment
M9	2 nd quarter of Year 3	Identification of the Best Piezoele Enhanced Sensor Manufacturabil with Sensor Antenna
M10	2 nd quarter of Year 3	Field Testing of Wireless Tempera in Selected Power Plant Locations
M11	2 nd quarter of Year 3	Demonstration of Strain Sensor
M12	4 th quarter of Year 3	Final Demonstrations in Coal-fired Final Project Reporting Preparation

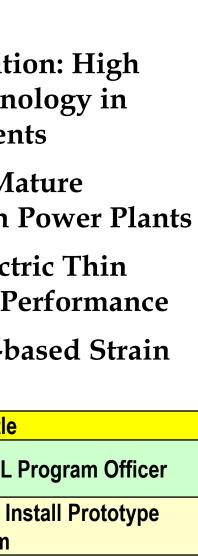
Current Activity Status:

- ✓ Kick-off meeting DOE on February 22, 2018
- ✓ Environetix subcontract executed on March 21, 2018
- ✓ Contact & Coordination with Duke Energy / PERC/ **Other Coal-based Power Plants**
- ✓ Hiring staff for project support at UMaine
- ✓ Engaging Grad and Undergrad students

Conclusions

- Project initiated within the past 2 months.
- Presented Project Background: Motivation, Goals, & Objectives
- Provided SAW Technological Overview and HE/HT SAW Sensor Background
- UMaine/Environetix are under current discussions with coal power plant collaborators to be selected as test bed for technology demonstration and advancement
- Described Project Structure & Implementation
 - ✓ Tasks & Milestones

NATIONAL ENERGY


TECHNOLOGY LABORATORY

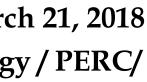
✓ Current Activity Status

DOE / NETL Project DE-FE0031550 Program DE-FOA-0001728: Advanced Combustion Systems (ACS): Existing Plant

ig and Testing HE SAW Sensor

Sensor System in

nsor System in


formance and

m Dielectric r in Harsh-

ectric Materials for ity and Integration

ature Sensor Arrays

d Power Plants and on to DOE / NETL

