Raman Spectroscopy for the On-Line Analysis of Oxidation States of Oxygen Carrier Particles

Victoria Leichner, John Kirtley, Hergen Eilers
Applied Sciences Laboratory, Institute for Shock Physics,
Washington State University,
PO Box 1495, Spokane, WA 99210

E-mail: eilers@wsu.edu

Pittsburgh, PA
April 10-12, 2018

DOE/NETL: FE0027840
Chemical Looping Combustion

Goal: Combust fossil fuels in pure O$_2$ so as to generate pure CO$_2$ for storage.

Conditions, including:
- Temperatures: 800 °C – 1000 °C
- Pressure: ~ 10 atm
- Particles constantly moving

Optimization of process requires ability to identify oxidation state

“DOE/NETL Advanced Combustion Systems: Chemical Looping Summary,” July 2013, DOE/NETL
Oxygen Carrier Particles

This Project:
- $\text{Fe}_2\text{O}_3/\text{Fe}_3\text{O}_4$
- CaSO_4
- CuO

Desired properties include:
- High conversion efficiency
- High reactivity
- Low agglomeration
- Long lifetime
- Low cost
- Low environmental impact

Goal, Objectives, and Vision

Goal:
Develop a sensor for the on-line analysis of the oxidation state of oxygen carrier particles and demonstrate its feasibility.

Objectives:
(1) Set up and test a Raman spectroscopy system in combination with a pressurized high-temperature sample chamber.

(2) Optimize operating parameters of the Raman spectroscopy system and measure the high-temperature spectra of oxygen carriers.

(3) Develop an analysis procedure, including statistical modeling and multivariate calibration, for the interpretation of the Raman spectra.

Long-term Vision:
Monitoring system that can easily be integrated into different types of CLC systems and provide feedback for process control.
Raman Spectroscopy

- Widely used for the detection/identification of materials.
- Demonstrated for standoff/remote single-shot applications.

Widely used and proven technique.

https://www.sciaps.com/raman-spectrometers/, accessed 9/30/16
Raman Spectroscopy

Provides vibrational information unique to material.
Corrections for Raman Spectra

Raman spectra require various corrections.

Processing:
- **Instrumental transfer function**
 - Filters
 - Spectrometer
 - Detector
 - Other optical elements
- **Background**
 - Fluorescence
 - Blackbody
 - Cosmic radiation
 - Stray light
 - Laser fluctuation
- **Multi-peak fitting**
 - Peak position
 - FWHM
 - Peak area
Peak fitting provides important information for calibration models.
Raman Analysis

- Heat known materials (e.g., Fe$_2$O$_3$, Fe$_3$O$_4$) to high temperature (e.g., 800 °C, 900 °C, and 1000 °C) and measure Raman spectra.
- Perform Inverse calibration (determine composition and temperature):

 \[x = \alpha_0 + \alpha_1 R_1 + \alpha_2 R_2 + \cdots + \alpha_h R_h \]
 \[T = \beta_0 + \beta_1 R_1 + \beta_2 R_2 + \cdots + \beta_k R_k \]

- x: Composition (e.g., mol% Fe$_2$O$_3$)
- T: Temperature
- α_i, β_i: fitting parameters
- R_i: subsets of the Raman parameters (frequency; FWHM; area)

Yields T and x in the form of linear combinations of the Raman parameters.

Using 355 nm instead of 785 nm reduces background by more than 5 orders of magnitude.

\[I_\lambda = \frac{2hc^2}{\lambda^5 \left(e^{\left(\frac{hc}{\lambda kT}\right)} - 1\right)} \]
Blackbody Radiation - Fe$_2$O$_3$

Effects of blackbody radiation apparent using 532 nm excitation.
Envisioned Raman Spectroscopy Field Setup

- **Hot Metal Oxide**
- **Laser**
- **Telescope**
- **Spectrograph**
- **Detector**

Graph showing concentration (%) vs. time (sec) for different metal oxides, and temperature vs. time with markers for specific temperatures.
Initial Laboratory Setup

Calibration measurements on well-defined samples.
Investigation of OCPs

- **Calcium Sulfate Studies**
 - Pulsed/time gating approach successful for temperatures $>1000\,^\circ\text{C}$

- **Iron Oxide Studies**
 - Pulsed lasers generally not successful because of instability under intense light.
 - CW lasers have proved promising
CaSO$_4$ – High Temperature Measurements

532 nm

Characteristic Raman peaks observed above 1000°C.

CW, 100 ms

Single shot, long-pulse, 130 µs

Laser induced breakdown spectra (LIBS) observed using laser pulses of sufficient intensity.

Fe$_2$O$_3$/Fe$_3$O$_4$ – Challenges with Absorption

Ideally, we want high scattering and low absorption.
Fe$_2$O$_3$ – Optimizing Light Intensity & Wavelength

Using CW:

<table>
<thead>
<tr>
<th></th>
<th>360 nm**</th>
<th>532 nm*</th>
<th>633 nm*</th>
<th>785 nm*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity</td>
<td>$\leq 10^6$ W/cm2</td>
<td>$\leq 10^5$ W/cm2</td>
<td>$\leq 10^5$ W/cm2</td>
<td>$\leq 10^5$ W/cm2</td>
</tr>
<tr>
<td>Highest Temperature</td>
<td>1050 °C</td>
<td>700 °C</td>
<td>400 °C</td>
<td>600 °C</td>
</tr>
</tbody>
</table>

*Using hematite powders (212 μm-600 μm)

**Light intensity only estimated, used densely packed powder

Light intensity must be low to avoid LIBS (creating an advantage for UV excitation).
Fe₂O₃ – Comparison of Wavelengths

Shorter wavelengths best for avoiding blackbody.
Fe$_2$O$_3$ at 1000 °C

Fe$_2$O$_3$ spectra at 1000 °C have been successfully collected using 360 nm and 532 nm excitation.

Benchmark high temperature spectrum.
Reference Fe$_2$O$_3$ and Fe$_3$O$_4$ Spectra at RT

Raman signatures of powders optimized prior to heating mixture sample.
Fe$_2$O$_3$/Fe$_3$O$_4$ Powder Mixture

Fe$_2$O$_3$/Fe$_3$O$_4$ can be differentiated up to 600°C using CW 532 nm.
Next Steps

- **Optimize Collection of Raman Spectra**
 - Further investigate UV Raman
 - Finalize selection of laser wavelength
 - Utilize lock-in amplifier with photomultiplier tube to minimize spectral noise/background

- **Test NETL Samples**
 - Collect reference spectra prior to heating

CuO-Fe$_2$O$_3$-Al$_2$O
Next Steps

- **Perform Multivariate Statistical Analysis**
 - Collect reference measurements for calibration
 - Test chemometric software for our analysis
 - Determine relative mole fraction of OCPs at a given temperature

Multiple linear regression (MLR) could be a useful chemometric technique for our analysis.

![Graph of Fe$_2$O$_3$ - 1000°C](image)

![PCA Analysis Example - Gel Ink Pens](image)

- **Blue gel inks**
- **Red gel inks**
Summary

- **CaSO$_4$**
 - Yields good spectra for both cw and low intensity pulses
 - Successfully measured spectra above 1000°C
 - LIBS observed with high intensity pulses

- **Fe$_2$O$_3$ and Fe$_3$O$_4$**
 - Shorter wavelengths and low intensity light ideal for avoiding LIBS and blackbody radiation
 - Benchmark Fe$_2$O$_3$ spectrum at 1000 °C achieved
 - Fe$_2$O$_3$/Fe$_3$O$_4$ Raman spectra collected up to 600 °C

- **Publications/Presentations**
Questions?

Thanks to DOE/NETL: FE0027840