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IntroductionIntroduction

 Reconstruct the 3D high temperature distribution within a boiler
with a novel fiber optic distributed temperature sensing system that
uses optically generated acoustic waves.

Overview of DOE project.

Distributed optical 
fiber sensing system

Active sensing element

Boiler

Reconstruction algorithm

+

Reconstructed 
temperature distribution

Distributed sensing system

Boiler

Fiber optics generator Fabry-Perot (F-P) fiber sensor



Learning with Purpose 5 PI Wang Page

IntroductionIntroduction
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 Speed of acoustic waves depend on the temperature of gaseous medium.

 The TOF (time-of-flight) of an acoustic signal over a propagation path
can be calculated as:

the velocity of sound at position
the ratio between the specific heats at constant pressure and volume of the gas                 
the reciprocal of velocity
the number of paths;
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PhotoacousticPhotoacoustic

Photoacoustic principle

Acoustic pulseLaser pulse
PA generation 

material

Photoacoustic definition

 Note: The PA principle is an optical approach to generate ultrasound signals. It involves a
PA generation material which absorbs the optical energy from the laser and converts it into
a rise in localized temperature.
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Photoacoustic MaterialsPhotoacoustic Materials

First Test
(mV)

Second Test 
(mV)

Third Test
(mV)

Average
(mV)

Carbon Black 1 3.0 3.0 2.8 2.93

Carbon Black 2 2.9 2.5 2.6 2.67

Carbon Black 3 2.2 2.2 2.4 2.27

Carbon Black 4 2.4 2.6 2.5 2.50

Carbon Black 5 2.1 2.1 2.2 2.13

Gold Nanocomposite 2.5 2.2 2.3 2.33

Ultrasound signal strength generated by different photoacoustic materials

 Carbon Black 1-4 are 20% Carbon black (partial size 20 nm) + PDMS.
 Carbon Black 5 is 20% Carbon black (partial size 101 nm) + PDMS.
 Gold-nanocomposite is 12% Gold-nanoparticle + PDMS.
 Carbon Black 5 had the lowest ultrasound signal, due to it being used many times, which may have caused

damage to it.
 Carbon Black 3 generated a low ultrasound signal because the thickness and the size of it was smaller than

the others.

Different photoacoustic materials
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Tip generatorTip generator

Microscope photo of the tip generator [1]
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Photoacoustic materials coated on fiber tip

Structure of the tip generator
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Tip generatorTip generator

Photoacoustic materials coated on glass slide
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Ultrasound signals at different distances.

 Note: This fiber optic ultrasound transducer system worked at a
distance of 1 meter. 600/630 µm fiber and photoacoustic materials
(Carbon black + PDMS) were used in this system. Photoacoustic
materials were coated on glass slides.

Experimental setup
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Sidewall generator 1Sidewall generator 1

Coat gold nanocomposite on the sidewall of
optical fibers [4].

Experiment setup: test a sidewall generator.

Sidewall ultrasound generator configuration 1.
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Acoustic signal generated from sidewall configuration 1.

 Note: Generated ultrasound signal was from the sidewall of a 400/425 μm fiber. A 532 nm
Nd:YAG nanosecond laser (Surelite I-10, Continuum) was utilized as the optical radiation source.
A hydrophone (HGL-0200, Onda) was used as a receiver to collect the ultrasound signals.
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Sidewall generator 2Sidewall generator 2

Sidewall fiber generator mounted on an aluminum plate [4]. Sidewall ultrasound generator configuration 2.

Experimental setup: test the sidewall
ultrasound generator configuration 2.
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ultrasound generator configuration 2.

 Note: Ultrasound signal generated from this configuration on the aluminum plate was much 
higher than previous configuration when the laser power and detection distance is the same.
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Fiber Bragg Grating (FBG) fiber sensorFiber Bragg Grating (FBG) fiber sensor
Fiber Bragg Grating performance comparison with hydrophone

PZT as signal generator, FBG as signal receiver PZT as signal generator, Hydrophone as signal receiver
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 Note: FBG fiber sensor got same results as hydrophone in the frequency domain. It showed that the
FBG fiber sensor could be used to detect the ultrasound signal in water.
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Fabry-Perot (F-P) fiber sensorFabry-Perot (F-P) fiber sensor
F-P fiber sensor structure

Structure of the F-P fiber sensor
Packaging of the F-P fiber sensor
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E is the quartz’s Young’s modulus, E = 7.2*1010 Pa;
µ is the quartz Poisson ratio, µ = 0.17;
h is the thickness of the quartz coverslip, h = 0.10 mm;
d is the diameter of the aluminum hole, d = 2.54 mm;
Yc = 0.0032 nm/Pa.

(nm/Pa)

1/200
00 2 2

[ ] [ ]
4 3 (1 ) ( / 2)

E h
f

w d


 




f00 is the lowest resonant frequency;
α00 is a constant related to the vibrating modes, α00 = 10.21;
w is the mass density of the quartz, w = 2.50 g/cm3.
E is Young’s modulus of quartz coverslip, E = 7.20*1010 Pa;
µ is the Poisson ratio of quartz, µ= 0.17;
h is the thickness of the diaphragm, h=0.10 mm;
d is the diameter of the diaphragm, d=2.54 mm.
f00 could be calculated as 1.8805e+05 Hz which is 0.19 MHz.

Sensitivity (How much the center of the diaphragm will be
deformed when a certain acoustic pressure applied on it): Hz

Resonant Frequency:
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Fabry-Perot (F-P) fiber sensorFabry-Perot (F-P) fiber sensor
F-P fiber sensor performance comparison with microphone
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Ultrasound signal detected by 
PCB microphone

Ultrasound signal detected by 
F-P fiber sensor (V20161202TEST2)

 At the distance of 10 mm, the Vpp from the
microphone and the FP sensor was 4.50 mV
and 2.23 mV, respectively.

 The F-P fiber sensor (V20161202TEST2)
has half the sensitivity of the microphone.

 The sensitivity of the microphone is 22.51
mV/Pa. Therefore, the F-P fiber sensor is
11.25 mV/Pa.

 The time cycle of the ultrasound signal
detected by the F-P fiber sensor is shown on
the left Fig which was 5.50 µs.

 The frequency was calculated as:
ଵ

ହ.ହ଴ ஜୱ
ൌ

0.18 MHz.
 It was very close to 0.19 MHz, meaning it

matched the resonant frequency calculation
results.
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Water temperature measurementWater temperature measurement

Schematic diagram of the water temperature 
measurement setup [1]. Photo of the water temperature measurement setup.

Travel time vs water temperature based on Marczak 
equation.

Experimental results: water temperature vs travel time

 Note: It demonstrated the temperature measurement capability of the fiber optic ultrasound transducer 
system in water.
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Aluminum plate temperature measurementAluminum plate temperature measurement

Schematic diagram of steel plate temperature measurement [5].

Photo of the Aluminum plate temperature measurement

Experimental results of aluminum plate temperature test in (a) time 
domain and (b) frequency domain by FBG

 Note: FBG fiber sensor was used as the signal
receiver in the solid condition. It proved the fiber
optic ultrasound transducer system.
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Air temperature testAir temperature test

Experimental setup: Measure the temperature of a 
torch flame.

Experimental results of air temperature test in time domain.

Experimental results of air temperature test 
in frequency domain.

 Note: It demonstrated that fiber optic ultrasound transducer
system was able to measure the air temperature.
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Air temperature reconstructionAir temperature reconstruction

Air temperature test experimental setup [11]. 
(Top view)

Ultrasound signal between positions 2 and 8

 Note: Air temperature reconstruction was done by using 
this fiber optic ultrasound transducer system [11].
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Distributed sensing capability testDistributed sensing capability test

 Sidewall fiber generators (G1 and G2) and the FBG sensors (R1 and R2) were attached 
on  the ridge of the rebar. The FBG sensors were attached along the ridge of rebar using 
epoxy. 
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Distributed sensing capability testDistributed sensing capability test
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Ultrasound signal detected by R2Ultrasound signal detected by R1

 Note: Ultrasound signal was detected in both receivers. This experimental demonstrated that the fiber optic 
ultrasound transducer system was able to use as multiple points at one time.
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Furnace testFurnace test

 Note: The F-P fiber sensor was used as the signal receiver. The Carbon Black shone by a
1000/1035 µm fiber was used as the acoustic signal generator. A water cooling system was
used in this test. The distance between the generator and the receiver was fixed as 10 mm. The
furnace temperature was set at room temperature (24ºC) to high temperature (700 ºC). The
furnace door was covered by aluminum foil during the test.
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Furnace testFurnace test

Ultrasound signal when the furnace setting temperature at
24 ºC (room temperature) and 700 ºC, respectively.

The sound speed was 345.549 m/s at 24 ºC (room temperature).

  345.549 
௠

௦
ൈ 27.24 μݏ ൌ  9.413 mm

9.413 mm
16.82 μs

 ൌ  559.631 m/s

which was represented by 506.25 ºC according to the temperature and
speed equation;
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GE pilot test GE pilot test 

Testing port on exhausting pipe of the ISBF

 Note: The test location was chosen within an exhausting pipe of the ISBF.
There are three standard ports along the pipe. The temperature within the pipe
is around 480°F when the burner starts.
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GE pilot testGE pilot test

Optical fiber sensor system 1, only the generator was made by fiber optics, the receiver 
was a PZT transducer.

04-2016 
Pilot test
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GE pilot testGE pilot test
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Pearson's r -0.9898

Adj. R-Square 0.97717
Value Standard Error

C1
Intercept 64.53073 0.26823
Slope -0.01171 5.96028E-4

• The above figure shows the 04-2016 pilot test data.
• The y value are the total time measured by UML sensor, the x value are the reference 

temperature provided by GE ref. sensor. 
• The relationship between the reference temperature and the total time is linear which 

proves that the sound speed is directly proportional to the medium’s temperature. 

04-2016 
Pilot test
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GE pilot testGE pilot test
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• The above figure shows the 04-2016 pilot test data.
• The black points are the temperature information from GE Reference sensor.
• The red points are the temperature information calculated from UML test sensor.

04-2016 
Pilot test
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GE pilot testGE pilot test

08-2017 
Pilot test

Optical fiber sensor system 2, the generator and receiver were both made by fiber optic systems.
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GE pilot testGE pilot test

• The above figure shows the 08-2017 pilot test data.
• The ultrasound signals at different temperature.
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GE pilot testGE pilot test

• The y value are the ultrasound travel time measured by the UML sensor, the x 
value shows the reference temperature data measured by the thermocouple. 

• The relationship between the reference temperature and the total time is linear 
which proves that the sound speed is directly proportional to the medium’s 
temperature. 

08-2017 
Pilot test
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GE pilot testGE pilot test

• The black points are the temperature data from the reference sensor.
• The red points are the temperature information calculated by UML sensing system.
• The biggest variation was 7.86 °C, the biggest error over the full range was 2.49%.  
• The difference between these two sets of data could be caused by different location of the sensors.

The UML sensor provided the average temperature between the generator and the receiver. The
reference temperature provided the point temperature near generator location.
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2D/3D temperature distribution system 12D/3D temperature distribution system 1

2D temperature distribution system 1
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2D/3D temperature distribution system 12D/3D temperature distribution system 1

Ultrasound signal detected by the microphone

• Ultrasound signal cannot be detected by F-P fiber sensor on this setup.
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2D/3D temperature distribution system 22D/3D temperature distribution system 2

• A 2.7 mm inner dimension glass tubing was used
to replace the aluminum disc to increase the
sensitivity and reduce the size of the receiver.

New F-P fiber sensor

• The ultrasound travel time was 14 μs;

• The Vpp is 7 mV, which was 1.4 time to the
previous F-P fiber sensor.

• Based on the sensitivity equation in page 14,
the d increase from 2.54 to 2.7 mm, the
sensitivity should increase to (2.7/2.54)4 =1.3
which matched the testing results.

Ultrasound signal when distance set as 5 mm.
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2D/3D temperature distribution system 22D/3D temperature distribution system 2

Ultrasound signal when receiver set at position 1.

• The ultrasound travel time was 25 μs, when the receiver was set at position 1.
• The distance between the generator and the receiver was 6 cm.
• 4 mm/ 340 m/s = 12 μs (Travel time in the air); 6 cm/ 4600 m/s = 13 μs (Travel time in copper tube);

12+13 = 25 μs (Total time)
• The Vpp of the ultrasound signal was 2.6 mV; much stronger that that in the previous all-optical

fiber sensor design.

Temperature distribution system with copper tube
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2D/3D temperature distribution system 32D/3D temperature distribution system 3

Temperature distribution system with aluminum plate

• The ultrasonic travel time to position 1 and position 2 are 14.72 µs and 28.18 µs, respectively.
• The distance between the position 1 and position 2 is 9 cm.
• Speed of sound travel in aluminum is 6320 m/s.
• The time difference is calculated as 9 cm/ 6320 m/s = 14.24 µs.
• And 28.18 µs - 14.72 µs = 13.46 µs.

The ultrasound signal at position 1 and 2.
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2D/3D temperature distribution system 32D/3D temperature distribution system 3

• Several planes. (At least 4 planes.)
• Each plane will have 8 lines.
• Each line will have 3 paths.
• For each plane we will get 3*8= 24 average temperature path data.

Temperature distribution system with aluminum plate
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Pre-pilot test on system 3 on 04-2018

2D/3D temperature distribution system 32D/3D temperature distribution system 3

• Pre-pilot test: Put the system into the testing area to check three F-P fiber 
receivers. 
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Pre-pilot test on system 3 on 04-2018

2D/3D temperature distribution system 32D/3D temperature distribution system 3

• Two sensors were good based on their spectrum. (Intensity great than -20 dB)
• One sensor was broken during the installation process since it collided to the 

mesh wires in the testing area.
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OutlineOutline
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Signal ProcessingSignal Processing

The field test conducted in GE had set fire to boiler 6 times. During each 
time of combustion, they took measurements 3 times. Between each 
combustion, there is one measurement. 

The idea of signal processing: based on the sliding correlation, the time-
index with maximum value will be the arrive point for interesting signal.

The procedure of signal processing is shown as follow:
• Filtered signal with band-pass filter : 200kHz – 250kHz
• Sliding correlation : two methods

Acoustic Fiber Signal Detection (Field Test)

Sampling rate: 50MHz

No address code coding or modulation

Emitter: Acoustic fiber -- pulse acoustic signal

Signal detection: sliding correlation
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Acoustic Fiber Signal Detection (Field Test)Acoustic Fiber Signal Detection (Field Test)

Using Chebyshev filter with pass-band: 200kHz to 250kHz



Learning with Purpose 43 PI Wang Page

Acoustic Fiber Signal Detection (Field Test)Acoustic Fiber Signal Detection (Field Test)
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Sliding correlation : 
• Method 1: get envelope lines of each filtered signal, then pick one 

envelope as reference chip to do correlation sliding along each signal’s 
envelope line. 
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Temperature Reconstruction Algorithm with GRBFTemperature Reconstruction Algorithm with GRBF

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

0
10

20
30

40
50

0

10

20

30

40
1000

1100

1200

1300

1400

1500

1600

Real Temperature Field

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

0
10

20
30

40
50

0

10

20

30

40
1000

1100

1200

1300

1400

1500

1600

1700

Reconstructed Temperature Field

( , ) 1000 600sin( / )sin( / )T x y x length y height  

Notes: In the simulation, 10 sensors
were evenly distributed, 10 basis
functions were used and 24 paths are
chosen.

• 2D temperature field case I:
Unimodal symmetric
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Temperature Reconstruction Algorithm with GRBFTemperature Reconstruction Algorithm with GRBF

• 2D temperature field case II: 

Unimodal deflection
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sensors were evenly distributed, 10
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Experimental Results (Microphone)Experimental Results (Microphone)

 Sensor location: sensors are distributed as below (Fig.1)
 Reconstruction results of temperature field in 2D (Fig.2)

Fig.1.  Sensor distribution Fig.2.  Temperature field
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OutlineOutline

 Brief overview of DOE project
• Introduction

 Experimental results
• Signal generator 

• Signal receiver 

- Fiber Bragg grating (FBG) fiber sensor

- Fabry-Perot (F-P) fiber sensor

• Temperature measurement

- Water temperature measurement

- Steel plate temperature measurement

- Air temperature test and reconstruction

• Distributed sensing capability test

• GE pilot test 

• Furnace test

• 2D/3D temperature distribution system 

 Signal processing and temperature reconstruction

 Conclusions
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ConclusionsConclusions

 What we have achieved.
1. Temperature test in water condition has been conducted.
2. Temperature test in a aluminum plate has been conducted.
3. Temperature test in air condition (furnace) has been conducted.
4. The temperature range for our all-optical fiber system in air condition

(furnace) is 19 ºC - 700 ºC.
5. The pilot test conducted in GE has proved our system is workable.
6. The 2D/3D temperature distribution system has been conducted.
7. This Project has partially supported 1 postdoctoral researcher, 3 Ph.D.

students, 1 master student and 2 undergraduate students.
8. We have published 13 papers related to this work, including

conference papers (submitted, accepted, published).
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ConclusionsConclusions

Future work

1. All-optical fiber system will be tested in the GE facility in a
higher temperature zone.

2. 2D and 3D temperature distribution system will be tested in
GE pilot test facility.
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