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Introduction

Boiler Distributed sensing system

Distributed optidal
fiber sensing syst
/

/

Reconstructed
temperature distribution

Fiber optics generator  Fabry-Perot (F-P) fiber sensor

Active sensing element

Overview of DOE project.

U Reconstruct the 3D high temperature distribution within a boiler
with a novel fiber optic distributed temperature sensing system that
uses optically generated acoustic waves.
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Introduction

1 Speed of acoustic waves depend on the temperature of gaseous medium.

1 The TOF (time-of-flight) of an acoustic signal over a propagation path
can be calculated as:

1
j_,[ dlj
xy,Z) Z\T(x,y,2)

TOF(l,) = j

C(x,,z) the velocity of sound at position (x,y,2)

z the ratio between the specific heats at constant pressure and volume of the gas
d(x,y,z) the reciprocal of velocity

J the number of paths;

A
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Photoacoustic

Thermal Acoustics

Laser pulse Acoustic pulse q
b PA generation P Energy Wave

material

Optical Thermal
P ——>
Energy Energy
q q

Photoacoustic definition Photoacoustic principle

€ Note: The PA principle is an optical approach to generate ultrasound signals. It involves a
PA generation material which absorbs the optical energy from the laser and converts it into
a rise in localized temperature.
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Photoacoustic Materials

Carbon Black 1 Ultrasound signal strength generated by different photoacoustic materials

(mV) (mV) (mV) (mV)
Carbon Black 3 2.93
2.9 2.5 2.6 2.67
Carbon Black 4 2.2 2.2 2.4 2.27
2.4 2.6 2.5 2.50
Carbon Black 5 2.1 2.1 2.2 213
2.5 2.2 2.3 2.33

Gold-nanocomposite

Different photoacoustic materials

Carbon Black 1-4 are 20% Carbon black (partial size 20 nm) + PDMS.

Carbon Black 5 is 20% Carbon black (partial size 101 nm) + PDMS.

Gold-nanocomposite is 12% Gold-nanoparticle + PDMS.

Carbon Black 5 had the lowest ultrasound signal, due to it being used many times, which may have caused
damage to it.

Carbon Black 3 generated a low ultrasound signal because the thickness and the size of it was smaller than

the others.
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Tip generator

Photoacoustic materials coated on fiber tip

Gold
nanocomposite

7z
Optical fiber core
sz

Optical fiber
(400 um core)

Structure of the tip generator
30 ———————————

25 ul
20 8
10 8

-10+

Voltage (mV)

20 F

-11 -10 -9 -8 -7
Time (ps)

Profile of ultrasound signal [2]
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Microscope photo of the tip generator [1]

0 5 10 15 20 25
Frequency

Bandwidth is wider than 20 MHz
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Tip generator

Photoacoustic materials coated on glass slide
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Experimental setup

€ Note: This fiber optic ultrasound transducer system worked at a
distance of 1 meter. 600/630 pm fiber and photoacoustic materials
(Carbon black + PDMS) were used in this system. Photoacoustic
materials were coated on glass slides.

{
i
f
iE
F

Voltage (mV) Voltage (mV) Voltage (mV) Voltage (mV) Voltage (mV) Voltage (V.
o
N

-0.63 -_I " 1 " 1 " 1 " 1 " 1 " 1 " _-
0 500 1000 1500 2000 2500 3000 3500

Time (us)

Ultrasound signals at different distances.

A
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Sidewall generator 1

Cladding
Core
?
Gold-nanocomposite

Coat gold nanocomposite on the sidewall of

optical fibers [4]. Sidewall ultrasound generator configuration 1.
0.5+
0.4+
0.3
T oz
S
0.04
-0.1
-0.2 T T T T T T T T T 1
19 20 21 22 23 24
Time (us)
Experiment setup: test a sidewall generator. Acoustic signal generated from sidewall configuration 1.

€ Note: Generated ultrasound signal was from the sidewall of a 400/425 pum fiber. A 532 nm
Nd:YAG nanosecond laser (Surelite I-10, Continuum) was utilized as the optical radiation source.
A hydrophone (HGL-0200, Onda) was used as a receiver to collect the ultrasound signals.
74
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Sidewall generator 2

Gold-nanocomposite
Aluminum plate

Al

Sidewall fiber generator mounted on an aluminum plate [4]. Sidewall ultrasound generator configuration 2.

2.5
2.0
1.5
1.0 4

0.5

1

0.0

Volatage (mV)

-0.5

-1.0

1.5

-2.0

T T T T 1
19 20 21 22 23 24

Time (us)
Experimental setup: test the sidewall Acoustic signal generated from sidewall
ultrasound generator configuration 2. ultrasound generator configuration 2.

€ Note: Ultrasound signal generated from this configuration on the aluminum plate was much
higher than previous configuration when the laser power and detection distance is the same.
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Fiber Bragg Grating (FBG) fiber sensor

Fiber Bragg Grating performance comparison with hydrophone

Water Ultrasound signal xsalsr Ultrasound signal
i s
5mm 5 mm

PET transducsr PZT transducer Hydrophone

FBG sensor

PZT as signal generator, FBG as signal receiver PZT as signal generator, Hydrophone as signal receiver

-50

Relative Amplitude (dB)
Relative Amplitude (dB)

-150

T T T T
0.0 02 0.4 0.6 0.8 1.0

Frequency (MHz)

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Freduency (MHz) . . .
Ultrasound signal received by Ultrasound signal received by Hydrophone in

FBG in frequency domain . frequency domain
€ Note: FBG fiber sensor got same results as hydrophone in the frequency domain. It showed that the
FBG fiber sensor could be used to detect the ultrasound signal in water. >
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Fabry-Perot (F-P) fiber sensor

F-P fiber sensor structure
\

14" 14 SMF

Quartz coverslip 1/2"

Quartz coverslip

oy

,,/
—

d
D1=1/10
,_“:’

,,,,,,,,,,,,,,,,,,

Ferrule

Ferrule

SMF

Aluminum plate

- N,

15"

Aluminum plate

Packaging of the F-P fiber sensor
Structure of the F-P fiber sensor
Resonant Frequency:

Sensitivity (How much the center of the diaphragm will be ay, E oy A

deformed when a certain acoustic pressure applied on it): Joo = ar 3w(l- 7). d/ 2)2] Hz
, ) foo 1s the lowest resonant frequency;
Y = 3(1-p")d/2) 10° (wm/Pa) a0 1s a constant related to the vibrating modes, a,,= 10.21;
¢ 16ER’ w is the mass density of the quartz, w = 2.50 g/cm’.
E is the quartz’s Young’s modulus, E = 7.2%10/° Pa; E is Young’s modulus of quartz coverslip, E = 7.20*10'° Pa,
u is the quartz Poisson ratio, u = 0.17; u 1s the Poisson ratio of quartz, u= 0.17;
h is the thickness of the quartz coverslip, & = 0.10 mm; h is the thickness of the diaphragm, 2=0.10 mm;
d is the diameter of the aluminum hole, d = 2.54 mm; d is the diameter of the diaphragm, d=2.54 mm.
Y, = 0.0032 nm/Pa. Jfyocould be calculated as 1.8805e+05 Hz which is 0.19 MHz.
74
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Fabry-Perot (F-P) fiber sensor

F-P fiber sensor performance comparison with microphone

Air condition

Air condition
Ultrasound signal
— —
| .J’ > 1 J[
1000 um optical fiber [/ i
F-P fiber sensor
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Ultrasound signal detected by

F-P fiber sensor (V20161202TEST2)
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Ultrasound signal

]
‘o] —
1000 um optical fiber L/
Glass slides with Microphone

Voltage (mV)  Voltage (mv)  Voltage (V)

Voltage (mV)

photoacoustic materials
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T T T T T T T

2.34 | Trigger signal ‘
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Time (us)

Ultrasound signal detected by
PCB microphone
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At the distance of 10 mm, the Vpp from the
microphone and the FP sensor was 4.50 mV
and 2.23 mV, respectively.

The F-P fiber sensor (V20161202TEST?2)
has half the sensitivity of the microphone.
The sensitivity of the microphone is 22.51
mV/Pa. Therefore, the F-P fiber sensor is
11.25 mV/Pa.

The time cycle of the ultrasound signal
detected by the F-P fiber sensor is shown on
the left Fig which was 5.50 ps.

The frequency was calculated as: =y
5.50 ps

0.18 MHz.

It was very close to 0.19 MHz, meaning it

matched the resonant frequency calculation
results.

UMASS
LOWELL



Water temperature measurement

Coupler

I

Ultrasound probe Hydrophone

Smm=E0.

Water temperature is adjusted

Schematic diagram of the water temperature
measurement setup [1].

3.55+

3.50 - '\

3.45+ \
3.40 \

3.35] N
330 N

Travel time (us)

3.254

Temperature (°C)

Travel time vs water temperature based on Marczak
equation.

Photo of the water temperature measurement setup.
3.55

3.50 4

3.45 4

Travel time (us)
w
3
!

Temperature (°C)

Experimental results: water temperature vs travel time

€ Note: It demonstrated the temperature measurement capability of the fiber optic ultrasound transducer

system in water.
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Aluminum plate temperature measurement

01 2 3 45 6 7 8 91011121314 15
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- . Circulator | i
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Photodetector E i o
02| H 1 = o003 e
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Schematic diagram of steel plate temperature measurement [5]. 2 o0 |
3 1.36MHz
3 Trigger 1 @ oot A
=
“‘ 2 ]
>
1 -1 0.00 W%W\AMM
0k ] g 10
0 1 28 4 5 6 7 8 9 1011 12 1314 15 Frequency (MHZ)
Time(us)
(a) Time domain (b) Frequency domain

Experimental results of aluminum plate temperature test in (a) time
domain and (b) frequency domain by FBG

€ Note: FBG fiber sensor was used as the signal
Photo of the Aluminum plate temperature measurement receiver in the solid condition. It proved the fiber

optic ultrasound transducer system.
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Air temperature test

0 100 200 300 400 500 600 700 800
0.5 T T

—— with torch flame |
04
5 03 b5 0 WO 40 420 M0 s0 480 50
£ o2} —— with torch flame
04
01} d
03
Du [ 1 1 1 1 1 1 1 ] % 02
—— No torch flame! | o i
‘ 1F \ ol 424.8us
: Y E i e > e LA ""'“‘"l""vﬂ""""‘w\ — Roloxch fame I : I
\ ] % - . . 5 (S 0F - 1F M
Experimental setup: Measure the temperature of a s 1 2 of ) 1
torch flame. e I | 452.14us ]
2 .
>
1 i
0 _

0 100 200 300 400 500 600 700 800
Time(us)

Experimental results of air temperature test in time domain.

€ Note: It demonstrated that fiber optic ultrasound transducer
system was able to measure the air temperature.
Experimental results of air temperature test
in frequency domain.
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Air temperature reconstruction

Generator/Receiver

Position
s, l
\ //
-
" v e
- -~
Direction of / \
Generator/Receiver
Candle

20 CM

h
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® @
20

5 CM
20CM

Air temperature test experimental setup [11].

(Top view)
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Ultrasound signal between positions 2 and 8

€ Note: Air temperature reconstruction was done by using
this fiber optic ultrasound transducer system [11].
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Distributed sensing capability test

Nanosecond
laser

—>| coupler

50 mm

G1l

G2

Tunable laser

!

Photodetector

v

R1

R2

A1=1530 A1=1540

Data acquisition
card

€ Sidewall fiber generators (G1 and G2) and the FBG sensors (R1 and R2) were attached
on the ridge of the rebar. The FBG sensors were attached along the ridge of rebar using

epoxy.

Learning with Purpose
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Voltage: V
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1.41066
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Distributed sensing capability test
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c)Laser Off |
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Voltage: V
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\
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(a)Trgger signal \
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N
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e
>

o
o
S

1 2 3 4 5 6 7 8 9 10
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Ultrasound signal detected by R1

1.2309

0 1 2 3 4 5 6 7 8 9 10 11 12 13
cLaser Off — 1+ r 1t~ 1~ 1 1 1 T T ' ]
N i
1 1 " 1 " 1 n 1 n 1 n 1 n I_ n 1 n 1 n 1 n 1 n 1
i b)2nd FBG Pie kS 1
N ]
il
I ! i
\ /
[ L L [ | P L 1 o e /. 1 n_4) o P 1 .
a)Trigger signal \
i 1 1 1 1 1 1 1 " 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time: ps

Ultrasound signal detected by R2

€ Note: Ultrasound signal was detected in both receivers. This experimental demonstrated that the fiber optic
ultrasound transducer system was able to use as multiple points at one time.
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Furnace test

Furnace door covered by
aluminum fail

In the furnace

Reference thermocouple

Glass slide coated
: with Carbon Water Back
| Black material  block  plate

‘ / Copper tube fpr protecting single mode fiber
- — - [ —

|- Holes for fixin1g fiber

1000/1035 pm fiber

Fiber support
1

ﬂ | Suppo:rt beam
L\ 1

R —— BT

Copper tub:e for water in and water out
1

700 °C 24°C
(Deep inside furnace (Room temperature)
temperature)

€ Note: The F-P fiber sensor was used as the signal receiver. The Carbon Black shone by a
1000/1035 um fiber was used as the acoustic signal generator. A water cooling system was
used in this test. The distance between the generator and the receiver was fixed as 10 mm. The
furnace temperature was set at room temperature (24°C) to high temperature (700 °C). The
furnace door was covered by aluminum foil during the test.

74
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-0 0 10 20 30 40 50 60 70 80 90

Furnace test

—s=— Temperature calculated based on travel time

—— Trigger signal\ !

2.37 s 600 —e— Reference thermcouple temperature
158 | | 500 4

400

300+

PR NI

200+

Temperature (°C)

100

T T T T ' T T T T T T T ' T T 1
0 100 200 300 400 500 600 700 800
Furnace setting temperature (°C)

Thermocouple reference temperature compared with temperature
calculated based on travel time at the same furnace setting temperature

The sound speed was 345.549 m/s at 24 °C (room temperature).

-10 0 10 20 30 40 50 60 70 80 90

Time (us)

345.549 % X 27.24 us = 9.413 mm

9.413 mm

222 T _ 559631
16.82 s m/s

Ultrasound signal when the furnace setting temperature at which was represented by 506.25 °C according to the temperature and
24 °C (room temperature) and 700 °C, respectively.

Learning with Purpose
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GE pilot test

Testing port on exhausting pipe of the ISBF

€ Note: The test location was chosen within an exhausting pipe of the ISBF.
There are three standard ports along the pipe. The temperature within the pipe
is around 480 ° F when the burner starts.

7A
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GE pilot test

Pilot test
Copper tube
l /‘\ 1000 um Optical fiber Support bar
Waterin ——» | , , |
> 7\7 y 3 o v . )
— 15— —_
Laser light | - >
27cm 1.2cm]‘ 18 cm
v
Water out |
: PZT
Flange plate

Glass slide with carbon black + PDMS

Optical fiber sensor system 1, only the generator was made by fiber optics, the receiver

was a PZT transducer.
74
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GE pilot test

= Total time
04-20 1 6 59.6 - Linear fit of travel time
Pilot test I e

Residual Sum of 0.00571
Squares

Pearson's r -0.9898
n Adj. R-Square 0.97717

Value Standard Error
Intercept 64.53073 0.26823
Slope -0.01171 5.96028E-4

Cc1

(¢)] (@) [6)]
© © ©
N w £
1 1 1

Total time (ps)

59.1

59.0

58.9 U T u T u T u T u T u 1
420 430 440 450 460 470 480
Temperature (°F)

* The above figure shows the 04-2016 pilot test data.

* The y value are the total time measured by UML sensor, the x value are the reference
temperature provided by GE ref. sensor.

* The relationship between the reference temperature and the total time 1s linear which
proves that the sound speed is directly proportional to the medium’s temperature.
74
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GE pilot test

04_20 1 6 —a— Referece temperature from GE
480 - —e— Calculated temperature from UMass
Pilot test
470
—~ 460
o
e
3 450
o
(0]
£
S 440
|_
430
420 T T T T T T T T T T T T T T p T T I T T T
0 5 10 15 20
Time (min)

e The above figure shows the 04-2016 pilot test data.
* The black points are the temperature information from GE Reference sensor.
* The red points are the temperature information calculated from UML test sensor.

A

Learning with Purpose Page 27 Pl Wang ll.’OMWAEsLsL



GE pilot test

08-2017
Pilot test

r

Optical fiber enerato’
i BlackiPD M

| Progeption tube,
F-P fjber recqlver* | &
RRERRAN
1 \

Optical fiber sensor system 2, the generator and receiver were both made by fiber optic systems.

A
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GE pilot test
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0.9064:

0.9042

Voltage (V)

0.9020 ~
0.8998

0.8976 -

0.8954

v v v ———r 7T
0 20 40 60 80 100 120 140 160

Time (us)

309 °C|

/

1
180

-20

Learning with Purpose

T T T T T
0 20 40 B0 80 100 120 140 160
Time (us)

1
180

Voltage (V)

Voltage (V)

1.969
1.968
1,967—-
1,966—-
1,965;
1.964—-
1.963;
1,562—-

1.961

1.960

|308 °C

0.8724

-20

———— 77— T —— T ——1
0 20 40 60 80 100 120 140 160 180

Time (us)

1318 °C]

T T T T T 1
0 20 40 60 80 100 120 140 160 180
Time (us)

* The above figure shows the 08-2017 pilot test data.
e The ultrasound signals at different temperature. ?
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08-2017
Pilot test

* The y value are the ultrasound travel time measured by the UML sensor, the x
value shows the reference temperature data measured by the thermocouple.
* The relationship between the reference temperature and the total time is linear

which proves that the sound speed is directly proportional to the medium’s
temperature.
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Travel time (us)

30.2 4

30.0

)

©

o
1

29.6 1

29.4 H

29.2 4

29.0

GE pilot test

= Travel time
Linear fit of travel time

Equation y=a+bx
Weight No Weighting
Residual Sum of 0.09336

Pearson's r -0.97386
Adj. R-Square 0.94568

Value  Standard Error
Intercept 38.49422 04839
Slope -0.0202 000156

E1

280

290

295

300

305

u 1
310 315 320 325
Temperature (°C)
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GE pilot test

—=— Reference temperature

08_20 1 7 330 = —=— Calculated temperature
Pilot test

320

310

300

290

Temperature (°C)

280

270 T v T v T v T v T v T v
0 10 20 30 40 50 60

Time (min)
* The black points are the temperature data from the reference sensor.
* The red points are the temperature information calculated by UML sensing system.
» The biggest variation was 7.86 °C, the biggest error over the full range was 2.49%.
* The difference between these two sets of data could be caused by different location of the sensors.
The UML sensor provided the average temperature between the generator and the receiver. The
reference temperature provided the point temperature near generator location. m
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2D/3D temperature distribution system 1

Generators with different positions

£ e
( R l
| I Hp
Support pillar

Multiple receivers

2D temperature distribution system 1
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2D/3D temperature distribution system 1

- A —3cm
B : 0.012 —dcm
F-P fiber snsor3 (552?) P
=1 0.010 —
== o, 0.008 |
//
E oo0s
S
- X - - ¢ g
—— . e Sy
= s =y z - ]
Fiber optic generator — I
— e
0.000
% I L T ¥ T E 1 2 I
-100 0 100 200 300 400
Time (us)
4cm F-P Receivers position . .
I Fem Ultrasound signal detected by the microphone
e
4cm
Generator position e

Microphone positions

» Ultrasound signal cannot be detected by F-P fiber sensor on this setup.
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2D/3D temperature distribution system 2

New F-P fiber sensor

6.042

Glass Tubing

6.040

Ferrule ]
- 6.038

/ SMF -
6.036 4

Quartz coverslip

6.034

Voltage (V)

* A 2.7 mm inner dimension glass tubing was used 6052
to replace the aluminum disc to increase the 6050
sensitivity and reduce the size of the receiver. 6026 : . . . ,
0 4 (pS;OO 200
Generator  Receiver Ultrasound signal when distance set as 5 mm.

e The ultrasound travel time was 14 ps;

 The Vpp is 7 mV, which was 1.4 time to the
previous F-P fiber sensor.

* Based on the sensitivity equation in page 14,
the d increase from 2.54 to 2.7 mm, the
sensitivity should increase to (2.7/2.54)4 =1.3

which matched the testing results.
7A
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2D/3D temperature distribution system 2

Temperature distribution system with copper tube

Voltage (V)

0.022

S
80

Time (us)

T —T
100 120 140

Ultrasound signal when receiver set at position [.

* The ultrasound travel time was 25 ps, when the receiver was set at position 1.

* The distance between the generator and the receiver was 6 cm.

* 4 mm/ 340 m/s = 12 us (Travel time in the air); 6 cm/ 4600 m/s = 13 us (Travel time in copper tube);

12+13 =25 ps (Total time)

* The Vpp of the ultrasound signal was 2.6 mV; much stronger that that in the previous all-optical

fiber sensor design.
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2D/3D temperature distribution system 3

Temperature distribution system with aluminum plate

0 20 40 60 80 100 120 140

e Position1] © ~ 7 T T T T T '_
Position 2 e S-063000
. Receiyer £
! > 083045 |-
setting '
< pOSitjE— a0 |-
£ - Posmon

0.0368 -

0.0322 |-

Voltage (V)

00276 |-

0.0230

0 20 40 60 80 100 120 140
Time (us)

The ultrasound signal at position 1 and 2.

* The ultrasonic travel time to position 1 and position 2 are 14.72 us and 28.18 ps, respectively.

* The distance between the position 1 and position 2 is 9 cm.

* Speed of sound travel in aluminum is 6320 m/s.

* The time difference is calculated as 9 cm/ 6320 m/s = 14.24 us.

o And28.18 s - 14.72 ps = 13.46 pis. M
UMASS
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2D/3D temperature distribution system 3

/m/\( V \\ Several planes _ \-\
| J( ] ) ( :\

\ 5 :\ :r
\ )/ /< )( \j N
/ LW One plane with eight lines

3.5cm7cm

=
~

One lines, three paths

For one line, we can get the average
temperature information from three paths.

Temperature distribution system with aluminum plate

» Several planes. (At least 4 planes.)
* Each plane will have 8 lines.

* Each line will have 3 paths.
* For each plane we will get 3*8= 24 average temperature path data. (A
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2D/3D temperature distribution system 3

Pre-pilot test on system 3 on 04-2018

* Pre-pilot test: Put the system into the testing area to check three F-P fiber
receivers.

7A
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2D/3D temperature distribution system 3

Pre-pilot test on system 3 on 04-2018

—— F-P-1
—— F-P-2

] — F-P-3
15 /\/\/W\/\/\/\/\/\/\/\
-20 - /\/\/\/\/\"/\/\/\/\/\/\/W

-25 4

-30 4

Intensity (dB)

-35 4

P s~ T~

45

T T T T T T T T T T T !
1520 1530 1540 1550 1560 1570
Wavelength (nm)

Spectrum of three F-P fiber sensors in the testing area.

» Two sensors were good based on their spectrum. (Intensity great than -20 dB)
* One sensor was broken during the installation process since it collided to the

mesh wires in the testing area. m
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- Air temperature test and reconstruction
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Learning with Purpose

Page 40

PI Wang

UMASS
LOWELL



Signal Processing

Sampling rate: S0MHz

No address code coding or modulation
Emitter: Acoustic fiber -- pulse acoustic signal
Signal detection: sliding correlation

The field test conducted in GE had set fire to boiler 6 times. During each
time of combustion, they took measurements 3 times. Between each
combustion, there 1s one measurement.

The idea of signal processing: based on the sliding correlation, the time-
index with maximum value will be the arrive point for interesting signal.

The procedure of signal processing is shown as follow:
* Filtered signal with band-pass filter : 200kHz — 250kHz
*  Sliding correlation : two methods
74
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0.1

.05

1.05

Acoustic Fiber Signal Detection (Field Test)

Using Chebyshev filter with pass-band: 200kHz to 250kHz

in combustion 1

-200 0 200 400 600

in combustion 9

800

-200 0 200 400 600

in combustion 14

800

-200 0 200 400 600
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Acoustic Fiber Signal Detection (Field Test)

Sliding correlation :
*  Method I: get envelope lines of each filtered signal, then pick one
envelope as reference chip to do correlation sliding along each signal’s
envelope line.

14th combustion envelope as reference Correlation of 9th with arriving time detected:

007 T T T T T 4 T T 1 T
Sliding Correlation with reference
0.06 k- i 35+ @ signal arriving point with correlation max | -
3 - -
0.05 T
251 7
0.04 7
2 - -
0.03 7
1.5 i
0.02 i
1 - -
0.01 i \ | 0 5 - 7
\’—
0 1 1 1 1 1 1 1 1 1 0
60 80 100 120 140 160 180 200 220 240 260 -100 0 100 200 300 400 500 600
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Learning with Purpose Page 43 PI Wang LOWELL



Temperature Reconstruction Algorithm with GRBF

2D temperature field case I:
Unimodal symmetric T(x,y)=1000+ 600sin(zx / length)sin(zy / height)

4/

A THRN
< TR
& TR ey
s A T
e IS ™
2 R
LR

Notes: In the simulation, 10 sensors
“t\s‘&%\\\\“\‘y\‘ 0 P 1 1 1
s were evenly distributed, 10 basis

0 0

0 1 2 3 4 5 6 7 8 9 10 w

Real Temperature Field functions were used and 24 paths are
chosen.

I
SRR
\\t“‘ X \\\\t
}‘ ‘“\\\\\\\\

o

3
SRS
~ 20
T 2 3 4 5 6 7 68 9 10

0

Reconstructed Temperature Field
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Temperature Reconstruction Algorithm with GRBF

2D temperature field case II:

Unimodal deflection
T(x,y)=600exp((—(x—4)*)/length—((y—3)*)/ (2* height)) +1000

Notes: In the simulation, 10
sensors were evenly distributed, 10
basis functions were used and 24
paths were chosen.

Reconstructed Temperature Field
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Experimental Results (Microphone)

(J Sensor location: sensors are distributed as below (Fig.1)
L Reconstruction results of temperature field in 2D (Fig.2)

0.06 Temperature field reconstruction (K)

245
« 8cm \ R 335 340 340
0.5cm 0.05 |- 1
T ‘ 330 335 335
& s Receiver
of L ritet < 0.04 | 35, 330
325
B >0.03 325
6 cm b 325
RAZ 70 8320
— o 320 |
0.02 — oy —
\\315/\ _
¥ -~ — 315 _
Generator E———" 6@ 7 0.01f - 315 /
b —
0.5 cm o ]
0 1 | 1 3«0 | 1 1
0 001 002 003 004 005 006 007 008
X
Fig.1. Sensor distribution Fig.2. Temperature field
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Conclusions

» What we have achieved.

1. Temperature test in water condition has been conducted.

2. Temperature test in a aluminum plate has been conducted.

3. Temperature test in air condition (furnace) has been conducted.

4. The temperature range for our all-optical fiber system in air condition
(furnace) 1s 19 °C - 700 °C.

5. The pilot test conducted in GE has proved our system 1s workable.

6. The 2D/3D temperature distribution system has been conducted.

7. This Project has partially supported 1 postdoctoral researcher, 3 Ph.D.
students, 1 master student and 2 undergraduate students.

8. We have published 13 papers related to this work, including
conference papers (submitted, accepted, published).
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Conclusions

Future work

1. All-optical fiber system will be tested in the GE facility in a
higher temperature zone.

2. 2D and 3D temperature distribution system will be tested in
GE pilot test facility.

7A
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