Advanced Design Concepts for Steels and Alloys Tailored for High-Temperature Fossil Applications

PI: Yukinori Yamamoto
Oak Ridge National Laboratory, Oak Ridge, TN 37831
E-mail: yamamotoy@ornl.gov

Co-investigators:

Bruce A. Pint
Oak Ridge National Laboratory, Oak Ridge, TN

Sudarsanam Suresh Babu, Benjamin Shassere*, Chih-Hsiang (Sean) Kuo
University of Tennessee, Knoxville, TN
(*Currently at Oak Ridge National Laboratory)

DOE Award Number: FEAA114
Period of Performance: Oct. 2013 - Sep. 2018
Presentation: April 11th, 2018 (in *Computational Materials*)
Acknowledgements

Program management:
Vito Cedro (NETL), Yarom Polosky, Edgar Lara-Curzio, Pete Tortorelli, Ian Wright, Hiram Rogers (ORNL)

Scientific advice and support:
Mike Brady, Muralidharan Govindarajan, Roger Miller, Zhiqian Sun, Donovan Leonard (ORNL),
Bernd Kuhn (Forschungszentrum Jülich GmbH, Germany),
Kazuhiro Kimura (National Institute for Materials Science, Japan)

Technical support:
Cecil Carmichael, Dave Harper, Greg Cox, Dustin Heidel, Kevin Hanson, Daniel Moore, Tom Geer,
Victoria Cox, Eric Manneschmidt, Jeremy Moser, Mike Stephens, George Garner, Doug Kyle, Doug Stringfield, Brian Hannah, Brian Sparks (ORNL)

Research sponsored by the Crosscutting Research Program, Office of Fossil Energy, U.S. Department of Energy
Presentation Outline

• Backgrounds/Motivation:
 – Concepts of “Advanced Alloy Design”

• Update on FY17/18
 – Development and optimization of “alumina-forming” high Cr FeCrAl ferritic alloys
 – Progress in “alumina-forming” austenitic stainless steels

• Summary and Future works
Project Goals and Objectives

Goals: To identify and apply breakthrough alloy design concepts and strategies for incorporating improved creep strength, environmental compatibility/resistance, and weldability into three classes of alloys (ferritic, austenitic, and Ni-base) intended for use as heat exchanger tubes in fossil-fueled power generation systems at higher temperatures than possible with currently available alloys.

Objectives: To develop and propose new creep-resistant, “alumina-forming”, cost-effective structural materials with guidance of computational thermodynamic tools.

- **Milestones (FY2018):**
 1. Prepare at least one hot-rolled plate of the second scale-up heat of “alumina-forming” high Cr FeCrAl ferritic alloy with high W content (December 2017, Met)
 2. Complete microstructural characterization and map hardness analysis of GTAW plate of the second scale-up heat (May 2018, in progress)
 3. Complete cross-weld Charpy impact test, fracture toughness test, and short-term creep test (up to 2,000h) of the second scale-up heat (August 2018, in progress)
 4. Complete alloy preparation and initial property screening including oxidation and ash-corrosion tests and fracture toughness test of proposed austenitic and Ni-based alloys (September 2018, in progress).
Propose New Alloy Design Concepts for Heat Resistant Steels and Alloys

- “Compositional guide” to form stable alumina-scale for surface protection in extreme environments
- High temperature strength through multiple second-phase precipitate strengthening

- Apply the design strategy to three different classes of fossil energy structural materials
 - **Ferritic (~600°C), Ferritic-Martensitic (~600-620°C)**
 - high Cr containing FeCrAl alloys
 - **Austenitic (up to 650°C)**
 - Alumina-Forming Austenitic stainless steels
 - **Ni-base (>700°C)**
 - Alumina-Forming Ni-base alloys

References:
Alumina-scale is Attractive for High-temperature Use with Water-vapor Containing Environments

Oxidation Data for Chromia-forming 347 SS (18Cr-11Ni)

(at 650°C in Air and Air + 10% Water Vapor)

![Graph showing Specimen Mass Gain vs. Exposure Time for Air and Air + 10% H₂O](Specimen Mass Gain (mg/cm²) vs. Exposure Time (h))

- **Air + 10% H₂O**
- **Air**

Data: B.A. Pint

Parabolic Rate Constant of Oxide Scales

![Graph showing Log Parabolic Rate Constant vs. Temperature](Log Parabolic Rate Constant vs. Temperature)

- **Fe-oxides**: More Protective
- **Cr₂O₃**, **NiO**, **SiO₂**, **α-Al₂O₃**

- **x10 slower oxidation kinetics than chromia**

Targets: Increase Service Temperature for Higher Efficiency

- Boiler
- Heat exchanger
- Header
- Superheater
- Reheater
- Boiler Tubing
- Steam Turbine
- Recuperator
- Casing

Alstom USC and AUSC Power Plants – J. Marion - NTPC/USAID Int. Conf. SC Plants - New Delhi, India, 22 Nov. 2013 – P 8

Solar Turbines 4.6 MW Mercury 50 recuperated low NO_x gas turbine engine
Currently Available Alumina-forming Alloys

• **Ni-base superalloys:**
 – Ni matrix (FCC) with intermetallic second-phase precipitate strengthening (e.g. coherent L1$_2$-Ni$_3$Al)
 – Attractive for high temperature use, but expensive

• **FeCrAl:**
 – Ferritic steels (BCC), mainly used as heating elements (e.g. Kanthal®)
 – Inexpensive, but weak at elevated temperature
 – PM-ODS approach improved high-temperature properties, but expensive

• **AFA (Alumina-Forming Austenitic) steels:**
 – Austenitic steels (FCC), developed as heat resistant steels at ORNL
 – Combined alumina-scale formability and multi second-phase strengthening
 – Fill the temperature gap between “Ferritic steels” and “Ni-base alloys”
Effect of Minor Alloying on Alumina-scale Formation (AFA)

SEM Cross-Sections After 72 h at 800°C in Air

Fe-14Cr-20Ni-2.5Al-0.5V-0.3Ti-0.1C

Fe, Cr-rich oxide

Metal

Al-rich oxide
(internal oxidation = bad) 10μm

Fe-14Cr-20Ni-2.5Al-0.9Nb-0.1C

Al2O3

Metal

#59740 (BSE 10kx)

2μm

Note: 5x Higher Magnification for Alloy with Nb

• Compositional guideline to form protective alumina:
 - Ti+V < 0.3 wt.%; Nb > (0.6-1) wt.%; N < 0.02 wt.%
Positive/Negative Effects on Alumina-forming Alloys

<table>
<thead>
<tr>
<th>Key elements</th>
<th>Control elements</th>
<th>Detrimental</th>
</tr>
</thead>
</table>

Key Elements
- **Austenite stabilizer**
- **MC/Laves forming elements**
- **Solid-solution hardening**
- **Precipitate hardening**
- **N getter (for air-melt)**

Control Elements
- **Stable alumina-scale formation**
- **Degrade oxidation resistance (when combined)**
- **Improve fluidity**
- **May degrade weldability**

Detrimental Elements
- **Expensive**
- **Improve oxidation resistance**
- **Degrade oxidation resistance**

Periodic Table

<table>
<thead>
<tr>
<th>Li</th>
<th>Be</th>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cl</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Ni</td>
<td>Cu</td>
</tr>
<tr>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
</tr>
<tr>
<td>Ag</td>
<td>Cd</td>
<td>In</td>
<td>Sn</td>
<td>Sb</td>
<td>Te</td>
<td>I</td>
<td>Xe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>Ce</td>
<td>La</td>
<td>Th</td>
<td>Pa</td>
<td>U</td>
<td>Np</td>
<td>Pu</td>
<td>Am</td>
</tr>
</tbody>
</table>

10 Advanced alloy design concepts for high temperature fossil applications.
Alumina-Forming Ferritic Steels
(High Cr containing FeCrAl alloys)
Design Corrosion/Oxidation/Creep Resistant Ferritic Steels

Fe-30Cr-3Al base alloys

- Fe-30Cr-3Al + Nb, Zr (Rolled at 300°C + Annealed at 1200°C) 500µm
- Fe-30Cr-3Al + W, Nb, Si (Aged at 700°C)

Phase equilibrium (JMatPro v.8)

- Fe-30Cr-3Al-0.2Si-1Nb

Important design factors for creep:
- Fraction of Laves phase at 700°C
- BCC solvus temperature

Yamamoto et al. TMS2017
Proposed Alloy Composition Ranges

Model alloys: Fe-30Cr-3Al-0.2Si-1Nb + (Nb, Ti, Mo, W, Zr), wt.%

Engineering alloys: Fe-30Cr-3Al-0.15Si-1Nb-6W-0.5Mo-0.3Ti-0.3Ni-0.4Mn-0.03C-0.05Y

Yamamoto et al. ASME-ETAM 2018 (to be published)
Min. Creep Rate / Creep-rupture Life Depend On Fraction of Laves Phase Precipitates

Min. creep-rate vs. Laves phase

Creep-rupture life vs. Min. creep-rate

Yamamoto et al., Crosscutting research program review meeting, 2017
Minimum Creep Rate Prediction
(Ferritic Fe-30Cr-3Al+Nb base, 700°C/50MPa)

*Used Bird-Mukherjee-Dorn (BMD) model

\[
\frac{\dot{\varepsilon}_m k T}{DEb} = A_{Dis} \left(\frac{\sigma_a - \sigma_{th}}{E} \right)^n
\]

\[
\sigma_{th} = \frac{Eb}{2\pi \lambda} \ln \frac{d_{ppt}}{b}
\]

2Nb model alloy
(crept at 700C/70MPa/1750h)

Slow Coarsening Kinetics in 2Nb and 1Nb-6W Alloys

X axis: particle diameter; Y axis: Cumulative Fraction, FCA = Fe-30Cr-3Al base, wt.% (model alloys)

FCA-1Nb

FCA-2Nb

FCA-1Nb-1Ti

FCA-1Nb-5W

FCA-1Nb-6W

Stable

FCA-1Nb-6W, 700°C/1000h

SEM-BSE

Kuo et al. TMS 2018
Creep Performance / Oxidation Resistance

Larson-Miller Parameter Plot
(tested at 650-800°C and 30-150MPa)

100h cycle exposure time, h

0 1000 2000 3000 4000 5000

Mass gain, mg/cm²

0 0.2 0.4 0.6 0.8 1

100h cycle exposure time, h

0 1000 2000 3000 4000 5000

Engineering alloys
- 30Cr-3Al-1Nb-6W-Mo-Ti-Mn-Si-C

Model alloys
- 25Cr-3Al-2Nb
- 30Cr-3Al-1Nb-0.5Ti
- 30Cr-3Al-1Nb-2W
- 30Cr-3Al-2Nb
- 30Cr-2.6Al-2Nb

Cyclic oxidation test
(100h cycle, at 800°C in 10% water vapor)

(3.3 mole % for 2Nb, and 7.1 mole% for 1Nb-6W-0.5Mo-0.3Ti)

Data: B.A. Pint

Yamamoto et al. Proceedings of ASME-ETAM 2018 (to be published)
High Surface Protection in Ash-Corrosive Environments

Ash-Corrosion Test at 700°C, 500h Cycles

<table>
<thead>
<tr>
<th>Ash</th>
<th>Al₂O₃ 16.9%, SiO₂ 22.6%, CaO 0.9%, Fe₂O₃ 7.8%, KOH 1%, TiO₂ 0.6%, MgO 0.2%, Fe₂(SO₄)₃ 19.8%, MgSO₄ 10.1%, K₂SO₄ 4.8%, Na₂SO₄ 15.1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>N₂, CO₂, H₂O, O₂, SO₂</td>
</tr>
</tbody>
</table>

Data: B.A. Pint

Yamamoto et al. ASME-ETAM 2018 (to be published)
Potential Issues with Low Ductility at RT

1Nb-6W Engineering alloy, SS curves

- 23°C
- 23°C (repeated)
- 300°C
- 600°C
- 700°C
- 750°C
- 800°C

True stress, MPa

True strain, %

Transition, 10^{-3}/s → 10^{-9}/s

Cold/Warm deformation

Hot deformation

25.4mm

Advanced alloy design concepts for high temperature fossil applications
Process/Alloy Optimization for Grain Refinement in Progress

1Nb-6W-0.5Mo-0.3Ti (Base)

As processed*

After additional TMT**

1Nb-6W-0.5Mo-0Ti+Zr (Modified)

0Ti-0.1Zr

0Ti-0.3Zr
Alumina-Forming Austenitic Stainless Steels
Initiated Property Screening of Newly Proposed Advance AFA alloys

$M_{23}C_6 + MC$ strengthening (CA01 and CA02):
$Fe-14Cr-25Ni-4Al-Mn-Nb-C$ with Cu, Hf, Y

$Fe_2W + M_{23}C_6$ strengthening (CA03-CA05):
$Fe-14Cr-(16-25)Ni-(3-4)Al-Mn-Nb-C$ with W, Cu, Hf, Y

High Cr containing AFA (CA06 and CA07):
$Fe-18Cr-25Ni-4Al-Mn-Nb-C$ with W, Cu, Hf, Y

Reference AFA (OC4):
$Fe-14Cr-25Ni-3.5Al-2.5Nb-0.1C$ base
Summary

Successfully demonstrated “New Alloy Design Concepts for Creep-resistant, Alumina-forming Alloys for High-temperature Fossil Applications” through development of two different classes of Fe-base alloys:

High Cr containing FeCrAl Ferritic alloy (Fe-30Cr-3Al-1Nb-6W base):
- Designed with computational thermodynamic tools
- Promising high-temperature properties
 - Creep-rupture tests
 - Good surface protection in both steam containing environment and fire-side corrosive circumstances
- Optimization of processability/toughness is in progress
 - Searching for potential applications in various industries

Alumina-forming Austenitic alloys (Fe-Cr-Ni-Al-Nb-C-W-Cu-Hf-Y):
- Proposed three different alloy designs (by following compositional guideline)
- Property screening in progress
 - Creep-rupture test at 750/800°C
 - Oxidation at 800°C in 10% water vapor
Future Works

High Cr containing FeCrAl alloys:
- Cross-weld property evaluation:
 - A metal-core weld filler wire production was completed
- Seek potential applications:
 - Thin plate/sheet/foil products for heat exchangers
 - Cladding (weld overlay) for protective coating; additively manufactured production

Alumina-Forming Austenitic Stainless Steels:
- Continue property evaluation of new AFA alloys with various strengthening second-phases:
 - List potential candidate microstructural designs for near-future developmental efforts (e.g. EEM)
- Seek potential applications:
 - Various industries are interested in the AFA alloys; communications are in progress

Alumina-Forming Ni-base alloys:
- Leveraged with other DOE-funded projects for wrought alumina-forming Ni-base alloys:
 - Evaluation of coherent L12 strengthening high-temperature Ni-Fe base wrought alloy is in progress
Thanks
Tensile Properties Compared to F-M Steel (Grade 91)
History of “Heat-Resistant/Stainless Steel Development”

Heat-resistant steels and alloys
- **Carbon steels**: Steam locomotives, etc.
 - Quench and temper/annealing
 - Tempered martensite / pearlite transformation
- **Low alloy steels**: Supercritical (SC)
 - Normalization/quench and temper/annealing
 - Martensitic/bainitic transformation
- **High Cr (9-12) FM steels**: Ultra-supercritical (USC)
 - Normalization and temper
 - Introduction of MX (VN, NbC)
- **Advanced austenitic steels**: USC
 - Austenite (FCC) matrix, Fe-Ni base
 - Solution hardening/ carbide strengthening
- **Ni-base alloys**: Advanced USC (A-USC)
 - Austenite (FCC) matrix, Ni-base
 - Solution hardening/ carbide or intermetallic strengthening

Stainless steels and alloys
- **Fe-P**:
 - “non-rusting steel”, India, ~B.C. 400
- **Fe-Cr (ferritic stainless steel)**:
 - Monnartz, Germany, 1911
 - Dantsizen and Becket, USA, 1911-12
- **Fe-Cr-Ni (martensitic/austenitic stainless steels)**:
 - Struss and Maurer, “Nirosta”, Germany, 1912
 - Haynes, “Martensitic stainless steels”, USA, 1912
 - Brearley, “Martensitic stainless steels”, UK, 1912

https://railroad.lindahall.org/essays/locomotives.html
http://www.topboilers.com/superheaters-coils.php#
http://www.new-york.me.uk/chrysler_building.htm
http://locomotive.wikia.com/wiki/CB%26Q_Class_S-4a