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Purpose of Study / Objectives

Purpose of Study

® Provide a clear Computational Thermodynamic understanding of Gr.91.
Objectives

® Provide simulations that thermodynamically accurate.

® Develop a model based on those simulations.

® [mprove Creep Resistance for High-Chromium Ferritic and Martensitic Steels.

e U.S. DEPARTMENT OF

FLORIDA ¥ (e )
FIU INTERNATIONAL 2 \4Y) /4
| UNIVERSITY




Type IV Cracks

Type 1V Cracks

Type IV . . :
Cracks ® Main observed failure during creep.

® Mostly been observed along the outer edge of the
HAZ, more specifically in the Fine-Grain HAZ

Stability of Operational Heat- (FGHAZ) and Intercritical HAZ (ICHAZ).

Sle:)?]c;r;céasry Condition Aﬁe(flt_le'gé?one ® The exact mechanism which leads to its critical

failure along the HAZ are still unknown.

Short-Term Long-Term
Creep Failure|] |Creep Failure
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Formation of the Heat-Affected-Zone

Heat-Affected-Zone 4

.

Fusion Lone

e (Contains 3 subzones which have been observed in
the HAZ:

1. Coarse-grain HAZ (CGHAZ)

Coarse Graim HAZ

Peak Temperature

s &=

2. Fine-grain HAZ (FGHAZ) : v

3 5 InterCI'ltlcal HAZ (ICHAZ) Fine Giraim HAZ : b Ei

e 3 main factors are involved in the formation of the wal\ "7 i £

HAZ and its subzones: N t— as.if

1. Peak welding temperatures \' o ,

a s Fef

2. Acl and Ac3 temperatures :

3. Formation and dissolution of M,,C, carbides. T __ '
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Short-Term Creep Failure

191
a5 received

Short-Term Creep

« experimental
— calculatad

frequancy [X]

® Speed up failure creep tests.

cumulative frequency [X)

- pragf i
® Can vary depending on parameters: o b o \ R e 4[&" Huml
* 100-1,000 total testing hours : '
* Temperatures between 575C-650C

» Stresses between 100MPa-200MPa - w s 873 K - 136 MP2

® Main observation 1s the increase and the
coarsening of M,,C particles which influences the
microstructure in the HAZ that can lower the creep
resistance.

curuative ‘requercy X
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Long-Term Creep Failure

Long-Term Creep i)

L T
. e NS . e . @ iz T

e Failure creep tests over a long period of time.

® (an vary depending on parameters:
* 100,000 or above total testing hours

* Temperatures as low as 550°C
» Stresses below 100MPa

® It has been observed that Z-phase will eventually form
and reduce the creep resistance of the material through
the dissolution of fine MX carbonitrides (M(C,N)) and
disappearance of Nb rich (NbX) MX phases.

Nuomber density [ m
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Creep Failure Solution

Observed Problems Solution - Adjust Ac Temperatures

and further optimize composition.
® Type IV Cracks

e FGHAZ ® Tuning HAZ Microstructure
e [CHAZ ® Change behavior of creep failure

® Short-Term Creep Failure Short-Term Creep Failure
® M,,C, Coarsening ® Destabilize M,,C, carbides

_ ® Reduce recovery
® [ong-term Creep Failure

e Z-phase Formation ® Long-term Creep Failure
® Dissolution of beneficial MX Phase ® Destabilize Z-phase

® Promotion of MX phase
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Approach of Study

15" Set of Results — Baseline Study
® [sopleth Diagrams
® Acl and Ac3 Temperatures

® Equilibrium & Scheil Simulations

2" Set of Results — Compositional
Changes
¢ Additional Alloying Element = Mn, Ni,
& Ti.

¢ 3 Different Compositional Changes =V,
Nb, & N.
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ICME Approach

Kinetic
Simulation

Creep resistance Property of
Gr.91 Alloy
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Results — Baseline Gr.91 System
Isopleth Diagrams
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Results — Baseline
Ac Temperatures Vs. Fe-C System

Gr.91 Base-System
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Results — Baseline
Molar Fraction of Secondary Phases
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1200

M,;Cs

* Most dominate secondary phase

* 600°C - 870°C

Z-Phase

 Stable nitrite in lower temperature regions
* 600°C - 770°C

MX Phases

 MXI1 and MX2

Goal
* Suppression of M,,C, and Z-phases.
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Results — Baseline
Site Fraction of MX1 and MX2

MX1
* NbN dominate at higher temperatures

* VN dominate at lower temperatures
MX2
* Mostly NbC formation

1000 1100 ) 1000 1100

TanparsewiC) Yuroamian i} * Very small stable temperature region
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Results - Baseline
Scheil Vs. Equilibrium
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Results - Baseline
Threshold Temperatures

Established Threshold Temperatures
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Results — Modified Gr.91

Effects of Increased Concentration of Mn and Ni

Material Composition for Gr.91 with added alloying elements i

Base System

Summary
0.66wt.%Mn (S-1) showed most effective when
compared with the 0.43wt.%Ni (S-2) to destabilize
My;Cs

© Mole Fraction of M23C6 Phase
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Results — Modified Gr.91

Effects of Increased Concentration of Ti
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Results — Modified Gr.91
Z-Phase Stability Changes

Adjustment to Gr.91

Elements
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Summary
S-6 for 0.025wt.%N showed greatest change to Z-
10° d -
] phase stability.
A 60 650 700 S-4 for 0.27wt.%V showed no change to total
Temperature (C) volume, only stability temperature.

S-5 for 0.11wt.%Nb showed no change to Z-phase
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Results — Modified Gr.91

Mole Fraction and Threshold Temperatures for Modified Gr.91
Modified Gr.91 Alloy Baseline Gr.91 Alloy
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Conclusion

The CALPHAD approach was utilized to perform basic precipitation phase stability.
Provided Isopleth diagrams, Ac temperatures, equilibrium and scheil simulations.

Mn and Ni concentration have destabilized M,;C,, while lowering N has destabilized Z-phase
and Ti has increased the beneficial MX phase.

Modified Gr.91 resulted in stable MX carbide (NbC) and nitride (TiN) formation.

Focus on carbide and highly stable nitride formation.
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