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Motivation
 High Temperature Gas Sensor FOSSIL FUEL: WHY?
 Better process control  maintenance  POWER PLANT 

DOWNTIME
• Gas PP  Cost $11,000/h  $264,000/day (KCF Technologies)

• Average Outage (2007/11) Coal Units alone (NETL / Krulla 2014) 
 Btwn 300 - 500 hours/unit-year  Over 40 M$ (coal units alone)
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Motivation
 High Temperature Gas Sensor FOSSIL FUEL: WHY?
  EFFICIENCY in fuel burning by controlling combustion

• 1% Heat rate improvement (500MW) (NETL / Romanosky 2015) 
 $780,000/unit-year; 
 Entire coal-fired fleet $340 million/yr coal cost savings

• 1% increase in availability (500MW) 
 44 Million kWh/yr added generation  2.6 M$ /unit-year in sales
 More than 2GW additional power / yr from the existing fleet
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 Emission / Pollution?
• 1% Heat rate improvement 

Cool fleet alone 
 13.8 billion metric tons CO2/yr



REQUIREMENTS / NEEDS
 GAS SENSORS capable of HTemperature Harsh-Environment oper.

• Operate RELIABLY with very little or no wires
 Wiring poses problem for reliability in harsh environments
 Packaging restricts the use of several technologies 

• NO MAINTENANCE (inaccessible locations: no wires; no 
packaging deterioration; no replacement)

• Sensor  STABLE in the environment over LONG PERIODS
• NO Battery
 Frequent maintenance
 Limited to 500C
 Size restriction
 Safety impediment for several applications
 Compromise system operation and reliability
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Methodology
 acoustics  resilient platform for HT operation
 Surface Acoustic Wave devices 

• Platform developed & improved @ UMaine for over 17 yrs
• Langasite  La3Ga5SiO14 Piezoelectric Crystal

 Stable up to 1400C
 Resistant to thermal shock

• Stable / Repetitive operation
 Tested over 5 ½ Mo @ 800C
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Methodology
 Surface Acoustic Wave T SENSORS 

• Allow WIRELESS operation
• Tested in multiple HT/Harsh Env.
 Sensor Turbines 
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Methodology
 Surface Acoustic Wave Temp. SENSORS (cont.) 

• WIRELESS operation
• Tested in multiple HT/Harsh Env.
 NETL Aerothermal Facility
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Sensor Performance Tests
• Sensor operation demonstrated in a 

combustor environment

• Multiple wired and wireless sensor 

designs tested up to 1100oC gas temp.

• All sensors survived entire test



Methodology
 Surface Acoustic Wave Temp. SENSORS (cont.) 

• WIRELESS operation  Tested in multiple HT/Harsh Env.
Penobscot Energy Recovery Company (PERC)

• Power plant: burns municipal SOLID WASTE 
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Installed in the boiler tubes → 
slag detection & removal



Methodology
 SAW  GAS SENSOR  PLATFORM 

• Provide STABILITY & SENSITIVITY 
 For GAS detection:

• Selectivity
• Retention of gas in the sensor

 Selectivity: 
• For HT: 

 Addressed  arrays w/ ≠ films  Multi-dimensional signatures / 
sensor array training & learning  

 Retention: To have a signature  Gas must be detected
• At HT  gas @  energy level  film used to RETAIN the gas
• In addition: 
 Other materials used to ATTRACT the gas to sensor
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Project Objectives
 Demonstrate  Performance  acoustic sensor (SAW) 

for GAS SENSOR applications in power plant environments
• Coal gasifiers, combustion turbines, solid oxide fuel cells, and 

advanced boiler systems
• HT  in the range 350C and 750C
• Passive operation
• Targeting initially: detection of H2 and O2

Major project targets:
• Establish SAW gas sensor (platform + film) STABILITY 
• Establish adequate RETENTION for HT gas detection 

 Thus functional sensor for long-term maintenance-free operation
• @ power plant:  fuel burning efficiency;  gaseous emissions, and 
 maintenance costs & downtime through condition-based monitoring
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LAST YEAR REPORTED PROGRESS
 SAWR platform development & testing for gas sensor
 Check stability of bare (no film) SAW sensor platform

• LGS crystal with Pd & Pt-Al2O3 electrodes fabricated & tested
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LAST YEAR REPORTED PROGRESS
 In order to achieve the required gas RETENTION @ HT

• YSZ (Yttrium stabilized Zirconia) 
 IYSZ film deposited initially on sapphire and then transitioned to LGS

• 15 to 30nm (reactive magnetron sputter deposition)
Photo & schematic: 

Thin Film Deposition, Processing, and Characterization Facility at the UMaine 
used to synthesize and analyze thin film materials for the SAW sensor devices
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LAST YEAR REPORTED PROGRESS

 X-ray diffraction(XRD) & X-ray photoelectron 

spectroscopy (XPS)
 8%Y2O3-92%ZrO2 film stoichiometry: film 65.9% O, 29.0% Zr, and 5.1% Y

 Anneal 1000C / 1h  crystalline quality
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LAST YEAR REPORTED PROGRESS

 Stoichiometry: before & after 850C 1hr
• No detectable ≠ in stoichiometry

After heating 850C 1hr  Bubbles (film unde stress) 
➔ ISSUE RESOLVED THIS YEAR
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Heated 850C
1h, vacuum



Sample O % Y % Zr %
YSZ Unheated / LGS 53.8 6.3 39.9

YSZ Heated / LGS 53.2 6.4 40.4



LAST YEAR REPORTED PROGRESS
 2016 @ NETL/Pitts: 

1st SAWRs platform test with 100% H2

 Two days  Sensors exposed to:
• 100% N2, 5% H2 in N2, and 100% H2

• Room temperature, 300C, and 500C (Pd-based sensor) and 
300C and 700C (PtAl2O3 - based sensor)

•  Stable platform  encouraging to develop gas 
detecting film

•
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Test made in collaboration 
with: Paul Ohodnicki,
Technical Portfolio Lead /  
Functional Materials Team
& Robert Fryer, ORISE 
Postdoctoral Researcher
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Project Progress & Current Experiments

1) Gas Test System at UMaine
 High-Temp. High-Pressure DelTech DT-29-PV-66 Gas Furnace
Chamber: > 1 cubic feet  huge dead volume (time)

 Smaller chamber built
 2 chambers: (1 in3  6.10-4 ft3 each)

• N2 reference (temperature) 
• Gas sensing
• Witness thermocouple access
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Project Progress & Current Experiments
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 HT Chamber  Sensors, gas delivery, & interrogation system
 System developed: 

 Real-time interrogation of up to 4 sensors (two / chamber)
 Two thermocouples (one / chamber)



Project Progress & Current Experiments
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 Complete test setup: Chamber, devices mounted & 
respective equipment



Project Progress & Current Experiments

2) Design, fabrication, and experimental verification of 
alternate orientations on LGS plane
 Simulations carried out on commercial LGS wafer:
 Two orientations identified: temperature compensation

• 175C  & 300C   insensitive to temp.  cross-sensitivity
• Acceptable electromechanical coupling for SAWR sensor
• Power flow angle addressed in the mask design

 Photomask generated & devices fabricated
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Project Progress & Current Experiments
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 Responses for the 175°C & the 300°C TCs SWRs
• |S11| and admittance at room temp. 

Temperature 
Compensated at 

175°C

Temperature 
Compensated at 

300°C



Project Progress & Current Experiments

 Experimental verification of temperature compensation 
at temperatures above 150°C

 Two orientations compensated at higher temperatures
 Publication on method of selection and verification of TC 

orientations on LGS at HT

27

Compensated at 
175°C

Compensated at 
300°C

A. Ayes, A. Maskay and M. Pereira da Cunha, Elec. Lett., 2017.



Project Progress & Current Experiments
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3) Gas Delivery Measurements
 TC SAWR 175C  Gas response @ Room Temperature

Conditioning the device 
surface: oxygen exposure

Exposure to hydrogen 
causes desired changes 
in resonant frequency



Project Progress & Current Experiments
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 TC SAWR 175C  Gas response @ 200°C
Hydrogen Exposures, 

~30kHz shift in resonant 
frequency



Project Progress & Current Experiments
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 TC SAWR 300C  Gas response @ 300°C
Hydrogen Exposures, 

~6kHz shift in resonant 
frequency



Materials Development 
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4) YSZ material development
 YSZ deposited at room temperature 
Bubbles after HT annealing (700°C) and cycling (750°C)
 Issue more severe for thicker layers
Could affect sensor stability over time

25 nm YSZ 50 nm YSZ 200 nm YSZ



Materials Development
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High-temperature deposition of YSZ (25 nm @ 850°C) 
Releases stress    PROBLEM SOLVED!!!

RT deposited YSZ, after 
HT cycling up to 750°C

850°C deposited YSZ, after 
HT cycling up to 750°C



Materials Development

 PtAl2O3 – based electrode sensors
• Develops stress hillocks much like YSZ
• PtAl2O3 deposited @  temp.  photoresist (lift-off process)
• Exploration of different interfacial layers to diminish stress
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Heated 800C
1h, air


ZrO2 / Zr
interfacial layer

Heated 800C
1h, air


Zr / ZrO2

interfacial layer



SAW Sensors with YSZ on Top 
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5) Capacitive coupling  YSZ deposited @ HT 
No photoresist necessary to define contacts



SAW Sensors with YSZ on Top
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 Fabrication of SAW resonators with YSZ deposited at HT
Bare Device Device with 15 nm of YSZ

300C
N2



300C
N2



Bare SAWR TC 175C YSZ on Top SAWR TC 175C



Collaborations
6) Collaborations with NETL/Pittsburgh
 Robert Fryer / Paul Ohodnicki
 Confirmation of SAWR platform stability (no detecting film)
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Collaborations
6) Collaborations with NETL/Pittsburgh
 Investigation of stability of UMaine Pt-decorated YSZ film on LGS
GOAL: Verification of chemical composition and morphology 

of Pt-doped YSZ films deposited onto LGS substrates
 Process A = Temp. cycling (750–300°C, 750°C dwell, 750–

300°C); fixed gas (air)
 Process B = Gas cycling (O2, N2, H2, N2, H2, N2, O2, N2, H2); fixed 

temperature (700°C)
 Planned measurements: 

• In situ 4-point electrical conductivity during annealing
• XPS and SEM before and after annealing
• XPS depth profiling as a control for the Pt-doped
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CONCLUSIONS
 Previous period activities & progress  HT  SAW Gas Sensor
 The presentation started with the:

• Motivations, Methodology, and Project Objectives
 Last year project developments  reviewed
 This year’s activities & advances:

1. Gas Test System at UMaine  new  vol./ dead vol.  fast response
2. Design, fab., and experim. verification  TC 175C and 300C LGS orientations
3. Gas Delivery Measurem. (O2 / H2 / N2): successful gas tests up to 500C
4. YSZ Pt-decorated film developed & fabricated: film stress  bubbles 

 Problem solved by HT deposition of YSZ

5. Electrical access  capacitive coupling technique developed at UMaine
6. Samples sent to NETL/Pitt.  Pt-YSZ / LGS  Stability  chem. comp. & morph

 Successful H2 detection. Encouraging results wrt:
• Sensor stability/endurance
• Temperature compensation at 175C and 300C  explored with Pt-YSZ SAWR
• Capability of detecting with H2 tested up to 500C
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