INTEGRATED HARSH ENVIRONMENT GAS / TEMPERATURE WIRELESS MICROWAVE ACOUSTIC SENSOR SYSTEM FOR FOSSIL ENERGY APPLICATIONS

Presenter: Mauricio Pereira da Cunha

Dept. of Electrical and Computer Engineering
Laboratory for Surface Science and Technology
University of Maine, Orono, ME 04469 USA
Environetix Technologies Corporation
Orono, ME 04469 USA
mdacunha@maine.edu

Award #: DE-FE0026217
Sept. 2015 – Aug. 18
I. Introduction
 ➢ Motivation: Gas Sensor Need for Operation in HT / HE

II. Methodology:
 Microwave Acoustics Technology for HT / Gas Sensors
 ➢ Technology accomplishments & Methodology for Gas Sensors

III. Project Objectives

IV. Recap: Last Year Reported Progress

V. Project Progress & Current Experiments

VI. Conclusions & Acknowledgements
I. Introduction
Motivation

➢ **High Temperature Gas Sensor FOSSIL FUEL: WHY?**

- Better process control \Rightarrow ↓ maintenance \Rightarrow ↓ **POWER PLANT DOWNTIME**

- Gas PP \Rightarrow Cost $11,000/h \Rightarrow $264,000/day (KCF Technologies)
- Average Outage (2007/11) Coal Units alone (NETL / Krulla 2014) \Rightarrow
 - Btw 300 - 500 hours/unit-year \Rightarrow Over 40 M$ (coal units alone)
Motivation

- **High Temperature Gas Sensor FOSSIL FUEL: WHY?**
 - **EFFICIENCY** in fuel burning by controlling combustion
 - 1% Heat rate improvement (500MW) (NETL / Romanosky 2015)
 - 1% Heat rate improvement (500MW) (NETL / Romanosky 2015)
 - $780,000/unit-year;
 - Entire coal-fired fleet $340 million/yr coal cost savings
 - 1% increase in availability (500MW)
 - 44 Million kWh/yr added generation
 - More than 2GW additional power / yr from the existing fleet

- **Emission / Pollution?**
 - 1% Heat rate improvement
 - Cool fleet alone
 - 13.8 billion metric tons CO₂/yr
GAS SENSORS capable of HTemperature Harsh-Environment oper.

- Operate **RELIABLY** with very little or no wires
 - Wiring poses problem for reliability in harsh environments
 - Packaging restricts the use of several technologies
- **NO MAINTENANCE** (inaccessible locations: no wires; no packaging deterioration; no replacement)
- Sensor → **STABLE** in the environment over **LONG PERIODS**
- **NO Battery**
 - Frequent maintenance
 - Limited to 500°C
 - Size restriction
 - Safety impediment for several applications
 - Compromise system operation and reliability
II. Methodology
Methodology

- μ~ acoustics → resilient platform for HT operation
- Surface Acoustic Wave devices →
 - Platform developed & improved @ UMaine for over 17 yrs
 - Langasite $La_3Ga_5SiO_{14}$ Piezoelectric Crystal
 - Stable up to 1400°C
 - Resistant to thermal shock
 - Stable / Repetitive operation
 - Tested over 5 ½ Mo @ 800°C

![Graph showing temperature and frequency shift](image)

- Highly reproducible
Methodology

- Surface Acoustic Wave T SENSORS →
 - Allow WIRELESS operation
 - Tested in multiple HT/Harsh Env.
 - Sensor Turbines

Temperature resolution < ±3°C
Drift < 1°C / 135 hrs
Surface Acoustic Wave Temp. SENSORS (cont.)

- WIRELESS operation
- Tested in multiple HT/Harsh Env.
 - ✔ NETL Aerothermal Facility

Sensor Performance Tests
- Sensor operation demonstrated in a combustor environment
- Multiple wired and wireless sensor designs tested up to 1100°C gas temp.
- All sensors survived entire test
Methodology

- Surface Acoustic Wave Temp. SENSORS (cont.) →
 - WIRELESS operation → Tested in multiple HT/Harsh Env.

Penobscot Energy Recovery Company (PERC)
- Power plant: burns municipal SOLID WASTE

Installed in the boiler tubes → slag detection & removal
Methodology

- SAW → GAS SENSOR → PLATFORM
 - Provide **STABILITY & SENSITIVITY**

For GAS detection:
- **Selectivity**
- **Retention** of gas in the sensor

Selectivity:
- For HT:
 - Addressed → arrays w/ ≠ films ⇒ Multi-dimensional signatures / sensor array training & learning

Retention: To have a signature → Gas must be **detected**
- At HT → gas @ ↑ energy level ⇒ film used to **RETAIN** the gas
- In addition:
 - Other materials → used to **ATTRACT** the gas to sensor
III. PROJECT OBJECTIVES
Project Objectives

- Demonstrate → Performance μ~ acoustic sensor (SAW)
 for GAS SENSOR applications in power plant environments
 - Coal gasifiers, combustion turbines, solid oxide fuel cells, and advanced boiler systems
 - HT → in the range 350°C and 750°C
 - Passive operation
 - Targeting initially: detection of H₂ and O₂

- Major project targets:
 - Establish SAW gas sensor (platform + film) STABILITY
 - Establish adequate RETENTION for HT gas detection

- Thus functional sensor for long-term maintenance-free operation
 - @ power plant: ↑ fuel burning efficiency; ↓ gaseous emissions, and ↓ maintenance costs & downtime through condition-based monitoring
IV. RECAP: LAST YEAR REPORTED PROGRESS
LAST YEAR REPORTED PROGRESS

- SAWR platform development & testing for gas sensor
- Check stability of bare (no film) SAW sensor platform
 - LGS crystal with Pd & Pt-Al₂O₃ electrodes fabricated & tested

Stable platforms
Pd @ 500°C
Pt-Al₂O₃ @ 750°C
In order to achieve the required gas RETENTION @ HT

- YSZ (Yttrium stabilized Zirconia) →
 - IYSZ film deposited initially on sapphire and then transitioned to LGS
- 15 to 30nm (reactive magnetron sputter deposition)

Photo & schematic:
Thin Film Deposition, Processing, and Characterization Facility at the UMaine used to synthesize and analyze thin film materials for the SAW sensor devices
LAST YEAR REPORTED PROGRESS

- X-ray diffraction (XRD) & X-ray photoelectron spectroscopy (XPS)

 - 8%Y_2O_3-92%ZrO_2 film stoichiometry: film 65.9% O, 29.0% Zr, and 5.1% Y
 - Anneal 1000°C / 1h \Rightarrow \uparrow crystalline quality

Post-deposition annealing improves crystalline quality
LAST YEAR REPORTED PROGRESS

- Stoichiometry: before & after 850°C 1hr
 - No detectable ≠ in stoichiometry

<table>
<thead>
<tr>
<th>Sample</th>
<th>O %</th>
<th>Y %</th>
<th>Zr %</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSZ Unheated / LGS</td>
<td>53.8</td>
<td>6.3</td>
<td>39.9</td>
</tr>
<tr>
<td>YSZ Heated / LGS</td>
<td>53.2</td>
<td>6.4</td>
<td>40.4</td>
</tr>
</tbody>
</table>

- After heating 850°C 1hr ⇒ Bubbles (film unde stress)
 ⇒ ISSUE RESOLVED THIS YEAR

Heated 850°C 1h, vacuum ⇒
LAST YEAR REPORTED PROGRESS

- 2016 @ NETL/Pitts:

 1st SAWRs platform test with 100% H₂

- Two days → Sensors exposed to:
 - 100% N₂, 5% H₂ in N₂, and 100% H₂
 - Room temperature, 300°C, and 500°C (Pd-based sensor) and 300°C and 700°C (PtAl₂O₃ - based sensor)
 - Stable platform → encouraging to develop gas detecting film

Test made in collaboration with: Paul Ohodnicki, Technical Portfolio Lead / Functional Materials Team & Robert Fryer, ORISE Postdoctoral Researcher
V. Project Progress & Current Experiments
Project Progress & Current Experiments

1) Gas Test System at UMaine

- High-Temp. High-Pressure DelTech DT-29-PV-66 Gas Furnace
 - Chamber: > 1 cubic feet \(\Rightarrow\) huge dead volume (time)

- Smaller chamber built
 - 2 chambers: (~1 in\(^3\) \(\approx\) 6.10\(^{-4}\) ft\(^3\) each)
 - \(\text{N}_2\) reference (temperature)
 - Gas sensing
 - Witness thermocouple access
Project Progress & Current Experiments

- HT Chamber → Sensors, gas delivery, & interrogation system
- System developed:
 - Real-time interrogation of up to 4 sensors (two / chamber)
 - Two thermocouples (one / chamber)
Project Progress & Current Experiments

- Complete test setup: Chamber, devices mounted & respective equipment
2) Design, fabrication, and experimental verification of alternate orientations on LGS plane

- Simulations carried out on commercial LGS wafer:
 - Two orientations identified: temperature compensation
 - 175°C & 300°C ⇒ insensitive to temp. ⇒ ↓ cross-sensitivity
 - Acceptable electromechanical coupling for SAWR sensor
 - Power flow angle addressed in the mask design

- Photomask generated & devices fabricated
Responses for the 175°C & the 300°C TCs SWRs

- $|S_{11}|$ and admittance at room temp.
Project Progress & Current Experiments

- Experimental verification of temperature compensation at temperatures above 150°C
 - Two orientations compensated at higher temperatures
 - Publication on method of selection and verification of TC orientations on LGS at HT

3) Gas Delivery Measurements

- TC SAWR 175°C → Gas response @ Room Temperature

- Conditioning the device surface: oxygen exposure

- Exposure to hydrogen causes desired changes in resonant frequency
Project Progress & Current Experiments

- TC SAWR 175°C → Gas response @ 200°C

Hydrogen Exposures, ~30kHz shift in resonant frequency
Project Progress & Current Experiments

- TC SAWR 300°C → Gas response @ 300°C

Hydrogen Exposures,
~6kHz shift in resonant frequency
4) YSZ material development

- YSZ deposited at room temperature
 - Bubbles after HT annealing (700°C) and cycling (750°C)
 - Issue more severe for thicker layers
 - Could affect sensor stability over time
Materials Development

- High-temperature deposition of YSZ (25 nm @ 850°C)
 - Releases stress ⇒ PROBLEM SOLVED!!!

RT deposited YSZ, after HT cycling up to 750°C

850°C deposited YSZ, after HT cycling up to 750°C
Materials Development

- **PtAl₂O₃ – based electrode sensors**
 - Develops stress hillocks much like YSZ
 - PtAl₂O₃ deposited @ ↓ temp. → photoresist (lift-off process)
 - Exploration of different interfacial layers to diminish stress

Heated 800°C 1h, air

- ZrO₂ / Zr interfacial layer
- Zr / ZrO₂ interfacial layer
5) Capacitive coupling \rightarrow YSZ deposited @ HT

- No photoresist necessary to define contacts
SAW Sensors with YSZ on Top

Fabrication of SAW resonators with YSZ deposited at HT

- Bare Device
- Device with 15 nm of YSZ

Bare SAWR TC 175°C

300°C

N₂

⇒

YSZ on Top SAWR TC 175°C

300°C

N₂

⇒
6) Collaborations with NETL/Pittsburgh

- Robert Fryer / Paul Ohodnicki
- Confirmation of SAWR platform stability (no detecting film)
6) Collaborations with NETL/Pittsburgh

- Investigation of stability of UMaine Pt-decorated YSZ film on LGS
 - GOAL: Verification of chemical composition and morphology of Pt-doped YSZ films deposited onto LGS substrates
 - Process A = Temp. cycling (750–300°C, 750°C dwell, 750–300°C); fixed gas (air)
 - Process B = Gas cycling (O$_2$, N$_2$, H$_2$, N$_2$, H$_2$, N$_2$, O$_2$, N$_2$, H$_2$); fixed temperature (700°C)
 - Planned measurements:
 - In situ 4-point electrical conductivity during annealing
 - XPS and SEM before and after annealing
 - XPS depth profiling as a control for the Pt-doped
VI. CONCLUSIONS & ACKNOWLEDGEMENTS
CONCLUSIONS

- Previous period activities & progress → HT μ~ SAW Gas Sensor
- The presentation started with the:
 - Motivations, Methodology, and Project Objectives
- Last year project developments → reviewed
- This year’s activities & advances:
 1. Gas Test System at UMaine → new ↓ vol./↓ dead vol. ⇒ fast response
 2. Design, fab., and experim. verification → TC 175°C and 300°C LGS orientations
 3. Gas Delivery Measurem. (O₂ / H₂ / N₂): successful gas tests up to 500°C
 4. YSZ Pt-decorated film developed & fabricated: film stress → bubbles
 - Problem solved by HT deposition of YSZ
 5. Electrical access → capacitive coupling technique developed at UMaine
 6. Samples sent to NETL/Pitt. → Pt-YSZ / LGS → Stability → chem. comp. & morph

- Successful H₂ detection. Encouraging results wrt:
 - Sensor stability/endurance
 - Temperature compensation at 175°C and 300°C → explored with Pt-YSZ SAWR
 - Capability of detecting with H₂ tested up to 500°C
The author would like to acknowledge that this is the work of a team of professors, scientists, supporting tech. staff, graduate and undergraduate students. Researchers from the Laboratory of Surface Science and Technology, University of Maine, Orono, ME, U.S.A directly involved in this project: M. Pereira da Cunha, R.J. Lad, Armando Ayes, Anin Maskay, M. Call, G. Bernhardt.

The author would like to acknowledge the collaboration with NETL / Pittsburgh for invaluable discussions and testing of gas films for the targeted high temperature SAW sensors. In particular, the author would like to acknowledge Drs. Paul Ohodnicki and Robert Fryer.

The author would like to thank the interest and support of the NETL/DOE, in particular the program officer for this current project, Richard Dunst, and the program officer from a previous project, Barbara Carney, as well as Sydni Credle, Ben Chorpening, and Patricia Rawls for Important discussions and guidance.
This work is supported by U.S. Department of Energy Award #: DE-FE0026217.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.