

Application of Chemical Looping with Spouting Fluidized Bed for Hydrogen-Rich Syngas Production from Catalytic Coal Gasification

Award # DE-FE0024000

Amanda Warriner, Liang Kong, Zhen Fan, Heather Nikolic, and <u>Kunlei Liu</u> Center for Applied Energy Research University of Kentucky 2540 Research Park Drive Lexington, KY 40511-8410

Limitations

- ✤ ASU & external water gas shift reaction
- * Narrowed temperature range, and limited availability of sensible heat
- \clubsuit Extensive CH₄ and tar formation for low temperature gasification
- Low H₂ / CO ratio, and complicated process for slag discharge and waste water treatment

Process	Outlet Gas	Oxidant	Steam	Carbon	CH ₄ concentration/	H ₂ /CO
	Temperature (°C)	Demand	Demand	Conversion	tar	(mol/mol)
Moving/fixed bed	425-650	low	high	low	>4% / high	2
Fluidized bed	900-1050	moderate	moderate	moderate	>2%/ low	0.6~0.7
Entrained flow	1250-1600	high	low	High>95%	<1000ppm/No	0.7

Characteristics of different gasification process

Develop an transformative catalytic coal gasification technology

- Avoid of ASU and external WGS
- High temperature gasification to improve cold gas efficiency
- Improve H₂/CO and eliminate CH₄ formation

Multi-function oxygen carrier development

- Oxygen & heat carrier
- Catalyst to improve gasification and WGS reaction

Demonstration of novel spouted bed reactor

- Combination of gasification and WGS reaction
- Avoid of ash melting
- Ash separation

Why Red Mud – The Properties

Catalytic Function for In-situ WGS

Center for Applied Energy Research

Inlet gas: 10% CO + 30% Steam

OC/Fuel Ratio

Large Quantity Production

Cost: \$87-113/ton

The Leachability

Water Leaching (ASTM D-3987)

	Alkaline Element						
	Na K Ca Cl						
Received	237.3	0.9	0.0	15.0			
Calcined 36.4 3.8 3.3 1.2							
pH(calcined)=11 < EPA limit 12.5							

Acid Leaching (TCLP - Toxicity Characteristic Leaching Procedure)

	Toxic Element							
	Cr	As	Se	Ag	Cd	Ва	Hg	Pb
Received	0.17	0.01	0.05	<0.01	<0.01	0.02	<0.001	<0.01
Calcined	0.38	0.02	0.05	<0.01	<0.01	0.04	<0.001	<0.01
EPA Limits	5	5	1	5	1	100	0.2	5

Grindability Comparison

			ОРС		
Grind Time (min)	<125 um (g)	125-500 um (g)	>500 um (g)	Total Before Sieve (g)	Total After Sieve (g)
0	0	0	500	500	500
15	253	246	1	500	500
30	341	159	0	500	500
45	399	101	0	500	500
60	443	56	0	499	499
75	470	29	0	499	499
90	488	11	0	499	499
105	496	3	0	499	499
120	497	1	0	498	498

			RM		
Grind Time (min)	<125 um (g)	125-500 um (>500 um (g)	Total Before Sieve (g)	Total After Sieve (g)
0	0	0	500	500	500
15	54	101	344	499	499
30	116	167	214	497	497
45	197	239	60	496	496
60	279	217	0	496	496
75	354	141	0	495	495
90	449	46	0	495	495
105	486	8	0	494	494
120	493	1	0	494	494

The Fate of Sulfur and Nitrogen

Center for Applied Energy Research

	Proximate Analysis (wt.%)					Ultimate Analysis (wt.%)				LHV
	Fixed Carbon	Volatile Matter	Moisture	Ash	С	Н	0	Ν	S	(MJ/kg)
PRB	52.43	34.59	4.96	8.02	68.17	5.23	14.27	0.98	3.33	26.86
WKY	52.43	36.55	2.47	8.55	71.43	5.3	10.23	1.2	3.29	30.01
EKY	52.56	34.44	0.96	12.04	73.38	5.02	7.03	1.28	1.25	29.63

Red Mud Oxygen Carrier				
Fe ₂ O ₃	43.74			
Al ₂ O ₃	23.37			
SiO ₂	11.78			
TiO ₂	7.74			
CaO	5.54			
Na ₂ O	6.43			

Operation to Ensure 100% Carbon Conversion

Sulfur and Nitrogen Balance

Center for Applied

Energy Research

No S- and N- Compounds in OCs

 No new phase generated, no sulfides or sulfates formed with red mud

50 KWth Unit

Conclusions

- Red mud is proven to be an effective oxygen carrier and catalyst for the CLG process. Stable reactivity is observed within 20 cycles. It also shows a good fuel selectivity.
- Gasification rate of char can be enhanced approximately by 1.5-3 times in the bed of red mud
- The effect of OC/fuel ratio on the produced syngas composition was studied. Syngas fraction increases when OC/fuel decreases due to oxygen lean condition.
- RM produced by rotary kiln displays a similar reactivity to RM synthesized by traditional freezing granulation method.

The cost of RM produced by rotary kiln is estimated to be approximately \$113 / ton.

Acknowledgements Center for Applied Energy Research

DOE/NETL

- David Lyons
- Steven Markovich
- Heather Quedenfeld
- Jenny Tennant

- Duke
- EPRI
- LGE and KU

- Jinhua Bao
- Jacob Blake
- Zhen Fan
- Liang Kong
- Heather Nikolic
- Lisa Richburg
- Steve Summers
- Amanda Warriner
- Jimin Zeng