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* Understand control-related challenges
* MW scale sCO, Recompression Closed Brayton Cycle (RCBC)
* Limited studies (see papet for references)

* Load changes, Startup, Shutdown, Trips
* Applicable to 10 MWe RCBC facility within Supercritical
Transformational Electric Power (STEP) program

* Rigorous undetlying simulation-based pressure-driven dynamic
modelit

t Mahapatra, P., Albright, J.T., Zitney, S.E. and Liese, E.A., “Advanced Regulatory Control of a 10 MWe Supercritical CO, Recompression Brayton Cycle towards Improving Power
Ramp Rates,” 6'" International sCO, Power Cycles Symposium, Pittsburgh PA, Mar 27-29, 2018.

T+ Zitney, S.E. and Liese, E.A., “Dynamic Modeling and Simulation of a 10MWe Supercritical CO, Recompression Closed Brayton Cycle for Off-design, Part-Load, and Control
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Control Methodology

Steady-State and Dynamic Simulation Framework

e Software Tools Primry (H{“ a,
* Aspen Plus/Dynamics v8.8 had

High Low

¢ Property MethOd Temperature{ Q5 Q 7z JTemperature
n=0.85 m Recuperator - Recuperator %
* NIST REFPROP

e Unit Operation Models?
* Turbomachinery

]
{41 Bypass
* Piping

* Heat Exchangers' - custom microtube-based recuperators
* Dynamic Model of 10 MWe sCO, RCBC Pilot PlantiiT

t Zitney, S.E. and Liese, E.A., “Design and Operation of a 10MWe Supercritical CO, Recompression Brayton Cycle,” 2016 AIChE Annual Meeting, San Francisco, CA, Nov 13-18, 2018.

ttJiang, Y., Liese, E.L., Zitney, S.E., and Bhattacharyya, D., “Optimal design of microtube recuperators for an indirect supercritical CO, recompression closed Brayton cycle,” Applied Energy, 216, 634-648,
2018.

tt1 Zitney, S.E. and Liese, E.A., “Dynamic Modeling and Simulation of a 10MWe Supercritical CO, Recompression Closed Brayton Cycle for Off-design, Part-Load, and Control Analysis,” 6t International
sCO, Power Cycles Symposium, Pittsburgh PA, Mar 27-29, 2018.
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Inventory-based Control for Turbine Inlet Temperature LABORATORY
Turbine Inlet
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Pressure Pressure
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IUfbine |tn|et * Inventory Tank Pressure
emperature . . . .
P * Monotonic relationship with TIT

* High P indicates less sCO, in the cycle
and vice versa

Psp |
| * Control challenges
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Inventory-based Control for Turbine Inlet Temperature

Turbine Inlet
Temperature
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Pressure Control
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Resulis

Large-ramps in MW demand (72% turn-down @3%/min)

Control Response
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Resulis

Large-ramps in MW demand (72% turn-down @3%/min)

Control Response
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* Identified primary control objectives for “fast” and efficient control
performance during rapid transients

* Developed advanced regulatory control-strategies to meet control
objectives

* Demonstrated controller responses utilizing above strategies within a
rigorous process simulation platform

* May serve as an use-case example and initial guide toward STEP’s RCBC
control development effort
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* Numerous scenarios to investigate
* Startup, Shutdown, Trips...
* Simple cycle
* Numerous control approaches to try
* E.g., switch TIT and load control signals
* More advanced control approaches
* Dedicated compressor surge-control for complete shutdown
* Spill-back streams on main & bypass controllers

* Non-grid connected operation
* Turbine speed control using Turbine Inlet Control/Throttle Valve
* Agent-based control compared to PID control for turbine speed control

* Improve simulation robustness
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Office of Fossil Energy: www.energy.gov/fe/office-fossil-energy

NETL: www.netl.doe.gov/

sCO, Technology
Program: www.netl.doe.gov/research/coal/energy-systems/sco2-technology

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.
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