Low Cost Air Separation Process for Gasification Applications

Gökhan Alptekin, PhD Ambal Jayaraman, PhD Dave Gribble Mike Ware

TDA Research, Inc. Wheat Ridge, CO galptekin@tda.com

DE-FE0026142 DOE Project Review Meeting

April 10, 2018

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Goals and Objective

- The project objective is to demonstrate techno-economic viability of a new air separation technology that can be integrated into coal gasification processes
- A high temperature chemical absorbent selective for O₂ removal is the key component of the air separation process
 - Early proof-of-concept demonstrations in an SBIR Phase II project and NETL project (DE-FE-0024060) proved high oxygen uptake and stable performance
- Project Tasks
 - Sorbent production scale-up
 - Bench-top demonstration of life (minimum 12,500 cycles)
 - Design of a fully-equipped prototype unit to fully demonstrate the concept at the bench-scale (1 kg/hr O₂ production rate)
 - Concept demonstration
 - Process design & cost analysis by Aspen Plus[™] simulation
 - IGCC power generation and CTL

Project Partners

Project Duration

- Start Date = October 1, 2015
- End Date = November 30, 2018

Budget

- Project Cost = \$1,600,000
- DOE Share = \$1,280,000
- TDA and its partners = \$320,000

Expenses as of March 31, 2018

- DOE Share = \$963,417
- Cost Share = \$172,531
- Total = \$1,135,948

Background

- Oxygen-blown gasifiers provide smaller size and higher efficiency
 - Substantially lower NO_x generation in IGCCs
 - Improved gas purity with the removal of N_2 in CTL processes
- ASU is one of the most expensive components of a gasification plant (constitutes ~15% of plant cost and consumes over 5% of plant power)
- Cryogenic air separation is the choice of technology at large-scale
 - 600 MW IGCC plant requires ~170 ton O₂/day
- Cryo-separation is highly energy intensive due to the thermal inefficiencies inherent in the low operating temperatures

TDA's Approach

TDA's process uses a unique sorbent material for air separation via an oxidation-reduction (redox) process

$$\mathbf{A_xB_yO_z} \textbf{+} \mathbf{nO_{2(g)}} \leftrightarrow \mathbf{A_xB_yO_{z+2n}}$$

- Unlike the conventional chemical looping combustion sorbents that also work via a similar redox cycle, the oxygen in our sorbent is released by changing process conditions (the cycle is not driven by the use of fuel)
- The oxidized metal oxide phase is "meta-stable" and autoreduces by changing T, P, oxygen partial pressure
 - The auto-reduction releases oxygen, which can be recovered as a pure product
 - No use of reducing gases (e.g., CH₄, H₂, CO, syngas) which will consume oxygen

Separation Process

Sorbent removes the oxygen from the high pressure air

- 90-95% of the oxygen is selectively removed (if desired)
- The vitiated high pressure air (now mostly N₂) is utilized in a gas turbine after boosting the pressure
- Regeneration is carried out at low pressure (near ambient pressure) using a warm sweep gas (superheated steam) under near-isothermal conditions
 - Combined pressure swing and concentration swing (i.e., the partial pressure difference) drives the O_2 from the sorbent
- Temperature or vacuum swing is also feasible but not economical

Stand-alone System

Integrated with IGCC Power Plant

System Design

Absorption Process

Regeneration Process

Cycle Sequence

Sorbent Optimization

- Oxygen release was documented over a wide range of temperatures
 - Early work (DE-FE0024060) focused on improving activity at lower temperatures

Sorbent Production Scale-up

- Early work batch size 0.1 to 0.5 kg
- Current batch size 10 to 100 kg
 - The scale-up work is carried out at TDA's pilot production facility Golden, CO using high throughput production equipment

 We completed Manufacturing and Quality Assurance Plans to ensure consistency in the sorbent material within each batch and minimize any batch-to-batch variations

Absorption Equilibrium Model

- The most recent formulations achieve very high equilibrium capacity above 6% wt. at a low temperature of 650°C
 - In these tests we ensured complete regenerations between each data point to obtain the maximum possible capacity
- A predictive model is developed by University of Alberta

Breakthrough Simulations

- Equilibrium isotherms were modeled using a simple Langmuir Isotherm
- Isotherm model parameters were used to simulate the breakthrough curves
- These simple models were able to replicate the heat effects and the average breakthrough time
- These models are refined for use in cycle optimization

CFD Modeling

- To assist with the reactor design, GTI is carrying out CFD modeling work
 - Model calibrations based on bench-scale test results are completed
 - The lab measurements and model predictions indicate modest temperature increase due to the reaction exotherm (the temperature rise between 60-110°C is predicted based on operating conditions)

Model results are used in the design of the 1 kg/hr prototype

It is now being used for full-scale system design

Working Capacity, Low Absorption P

- Sorbent achieves a high hourly working capacity at short cycle times
 - Less than 20 min
- Hourly working capacity
 - □ 4.6% wt. O₂ at 800°C
 - □ 1.4% wt. O₂ at 700°C
 - □ 1% wt. at 650°C

Sorbent Working Capacity

GHSV = 500 h⁻¹, T = 800°C, P_{abs} = 300 or 150 psig, P_{des} = 12 psig

Adsorption pressure [psig]	Sorbent			
	Per cycle Per hour		Cycles completed	
	[kg O2/kg [kg O2/kg			
	sorbent/cycle]	sorbent/hr]		
300	2.54%	0.157	1000	
100	0.52%	0.052	500	

 High pressures in IGCC applications provides three times higher working capacity

Multiple Cycle Tests

 Sorbent showed a stable cyclic capacity of over 2.5% wt. O₂ at 750°C

Sorbent Life Test

- **Sorbent has been cycled more than 6,000 cycles at low temperature**
- Working capacity of ~ 1% wt. O_2 is accomplished

Prototype Unit

1 kg/hr O₂ Generation System

Reactor Design

	High Me	n-Tempera Ilen Furn
Vessel Sizing f	or 1 kg/h	r 0 ₂
O ₂ Product Rate	1	kg/h
O ₂ Product Rate	16.7	g/min
Sorbent Capacity	1.57%	wt. O2
Sorbent density	0.793	kg/L
Cycle time	30	min
Sorbent needed	31.8	kg
Total Sorbent Volume	40.2	L
Sorbent Volume (1 Bed)	10	

- **6" diameter 36" height vessels to house 10-12L (0.4 CF) sorbent**
 - Incoloy HT is chosen for the material with a design temperature of 805°C and pressure of 295 psig

Passive Cooling Loops

- □ Passive Cooling Loops are designed to cool the Steam/O₂ stream from 800°C to ≤ 600°C to safeguard the system valves
- Additional passive cooling employed to protect Instrumentation

Control and Instrumentation Hardware

Skid Electronics and Control Panel with HMI High-Voltage (480V 3-Phase AC) Motor and Heater Control

Techno-economic Analysis (TEA)

TDA in collaboration with University of California, Irvine is carrying out a high fidelity process design and economic analysis

D TDA's ASU provides significant improvements in plant performance

- An increase in net plant efficiency from 32% to 34.0% for an IGCC plant equipped with a cold gas cleanup system (compared to a cryogenic ASU)
- Efficiency also improved for IGCC plant with warm gas cleanup from 35.3% vs 34.5%

ASU Desorption Temp, C	650	750	800	650	750	800
Gas Cleanup	Cold	Cold	Cold	Warm	Warm	Warm
Net Efficiency, HHV	34.46	33.79	33.54	35.25	34.92	34.90

- There is a significant efficiency gain by lowering the operating temperature of the ASU since it reduces the steam temperature used in the desorption process
- From equipment design standpoint, the lower temperature is highly advantageous:
 - Allow us to use lower cost alloys
 - Reduce the wall thickness for the pressure vessels

ASU Operating Temperature

ASU Desorption Temp, C	650	750	800	650	750	800
Gas Cleanup	Cold	Cold	Cold	Warm	Warm	Warm
Net Efficiency, HHV	34.46	33.79	33.54	35.25	34.92	34.90

- There is a significant efficiency gain by lowering the operating temperature of the ASU since it reduces the steam temperature used in the desorption process
- From equipment design standpoint, the lower temperature is highly advantageous:
 - Allow us to use lower cost alloys
 - Reduce the wall thickness for the pressure vessels
- However, the working capacity will be lower at the lower operating temperature increasing the bed size
 - Trade off between high cost of construction materials against the reactor size
- After optimization of the desorption temperature, preliminary TEA analysis was completed and a Topical Report was submitted to DOE

Process Techno-economic Analysis

Case		Case 1A		Case 1B	
	IGCC – Cold Gas		IGCC – Warm Gas		
	Cleanup -Selexol™		Cleanup – TDA Sorbent -		
Type Plant	GE Gasifier		GE gasifier		
		TDA		TDA	
ASU Technology	Cryogenic	Sorbent	Cryogenic	Sorbent	
CO ₂ Capture, %	90	90	90	90	
Gross Power Generated, kWe	727,370	733,394	674,331	736,952	
Gas Turbine Power	464,000	464,000	417,554	464,000	
Steam Turbine Power	257,403	260,589	246,746	262,405	
Syngas/Air Expander	5,968	8,806	10,031	10,547	
Auxiliary Load, kWe	192,927	163,827	120,661	140,536	
Net Power, kWe	534,443	569,567	553,671	596,416	
Net Plant Efficiency, % HHV	32.00	34.0	34.46	35.25	
Coal Feed Rate, kg/h	221,584	222,095	213,013	224,318	
Raw Water Usage, GPM/MWe	10.92	9.36	10.55	10.86	
Total Plant Cost, \$/kWe	3,359	3,208	3,212	3,161	
COE without CO ₂ TS&M, \$/MWh	133	126.5	126	123	
COE with CO ₂ TS&M, \$MWH	142	134.5	134	130.7	
Cost of CO ₂ Capture, \$/tonne	37	31.6	31	28.4	

Future Work

- We will complete the sorbent life tests (12,500 cycles) at low temperature
- TDA will start the testing of the 1 kg/hr prototype unit demonstrating the high temperature air separation process
- The results from the prototype tests will be used to validate the CFD and absorption cycle models
- The performance results will also be used to revise the process design models being developed by UCI
- Revise our estimates for the cost of CO₂ capture for GE and E-Gas gasifier based IGCC power plants and oxy-combustion coal fired power plant

Acknowledgements

- Dianne Madden, NETL (Project Manager)
- David Gribble, Ambalavan Jayaraman, Michael Bonnema, Rita Dubovik, TDA Research
- Chuck Shistla, GTI
- Arvind Rajendran, UOA
- Ashok Rao, UCI

