

Ceramic Hollow Fiber Membrane Reactor for Air Separation and Oxygen Production

PI: Xingjian (Chris) Xue Dept. of Mechanical Engineering and SOFC program University of South Carolina, Columbia, SC

- Technology aims :
 - enhance production rate of high-purity oxygen from air;
 - Improve stability and reliability;
 - Reduce cost.

Working principle of ceramic membrane for oxygen permeation

Feed (air) side $0.50_2 + 2e^- \rightarrow 0^2 - 0^2$

Membrane $\downarrow O^{2} \downarrow O^{2} \downarrow O^{2} \downarrow O^{2}$ $\uparrow e^{-} \uparrow e^{-} \uparrow e^{-} \uparrow e^{-}$

Permeate (oxygen) side $O^{2-} \rightarrow 0.5O_2 + 2e^{-}$

- At the feed (oxygen rich) side :
 - oxygen molecule combines with electrons from the permeate (oxygen lean) side, thereby being reduced to oxygen ion;
 - generated oxygen ion jumps into oxygen vacancy in dense membrane and migrates to the permeate side;
- At the permeate side (oxygen lean):
 - oxygen ion is oxidized to form O₂ and release electrons;
 - released electrons at the permeate side then transport back to the feed side, forming a closed-circuit loop within the membrane.

Membrane module should be located here

This figure is adopted from the Office of Fossil Energy, Energy.gov

<u>Project goals:</u>

- Mixed conducting materials with high electrochemical kinetic properties;
- Novel hollow fiber membrane design and fabrication;
- Membrane stack and module development.

Advantages and commercial viability:

- Improve specific oxygen flux and enhance permeation performance;
- Reduce system and operating cost;
- Improve robustness and reliability;
- Up-scaling flexibility for various applications.

The XRD patterns of as-prepared PrBaFe_(2-x)Sn_xO_{5+δ} (x=0, 0.05, 0.1, 0.15, 0.2, 0.3) powder samples calcinated at 1000 °C for 6 h in air.

UNIVERSITY OF

Intesity (a. u.)

Intesity (a. u.)

20

(220)

The XRD patterns of $PrBaFe_{(2-x)}Sn_xO_{5+\delta}$ after reducing treatment at 800 °C for 24h in humidified gas mixture H_2/N_2 with $H_2:N_2 = 1:9$ (volume ratio).

 The XRD patterns of PrBaFe_(2-x)Sn_xO_{5+δ} (x=0.1) at different stages of redox cycles at 800 °C.

The oxygen content (5+δ) as a function of x value in PrBaFe_(2-x)Sn_xO_{5+δ} (x=0, 0.05, 0.1, 0.15, 0.2, 0.3) before and after reducing treatment at 800 °C for 24h in humidified gas mixture of 10%H₂ + 90%N₂.

 HR-TEM images, FFT and schematic illustration of crystal structure of PrBaFe_(2-x)Sn_xO_{5+δ} (x=0.1). (a,b) HR-TEM image and FFT before reducing treatment; (c,d) HR-TEM image and FFT after reducing treatment; (e) schematic representation of double perovskite PrBaFe₂O_{5+δ}.

			Sn doping	g amount				
	x=0		x=0.1		x=0.15		x=0.3	
Atomsphere	H ₂	H_2+N_2	H ₂	$H_2 + N_2$	H ₂	H ₂ +N ₂	H ₂	H ₂ +N ₂
Ea (eV): 400-700 °C	1.14	1.18	1.03	1.01	0.96	0.92	1.29	1.31
Ea (eV): 750-800 °C	/	/	0.53	0.59	0.74	0.77	/	/

 Normalized ECR behaviors of bulk PrBaFe_(2-x)Sn_xO_{5+δ} (x=0, 0.1, 0.15, 0.3) at 750 °C between humidified H₂ and humidified 50%H₂+50%N₂.

 Normalized ECR behaviors of bulk PrBaFe_(2-x)Sn_xO_{5+δ} (x = 0.1) at 400 –800 °C between humidified H₂ and humidified 50%H₂+50%N₂.

	Sn doping amount											
Step change of	x=0		x=0.1		x=0.15		x=0.3					
oxygen partial	k _{ex}	D_{chem}	k_{ex}	D_{chem}	k_{ex}	D_{chem}	k _{ex}	D_{chem}				
pressure	(10 ⁻⁶ m s ⁻¹)	(10 ⁻⁷ m ² s ⁻¹)	(10 ⁻⁶ m s ⁻¹)	(10 ⁻⁷ m ² s ⁻¹)	(10 ⁻⁶ m s ⁻¹)	(10 ⁻⁷ m ² s ⁻¹)	(10 ⁻⁶ m s ⁻¹)	(10 ⁻⁷ m ² s ⁻¹)				
$H_2 \rightarrow H_2 + N_2$	2.30	0.57	3.56	4.22	3.28	3.12	2.76	1.58				
$H_2 + N_2 \rightarrow H_2$	2.98	3.14	4.42	6.04	3.32	5.52	3.18	4.27				

Surface exchange coefficient (k_{ex}) and bulk diffusivity (D_{chem}) of PrBaFe_(2-x)Sn_xO_{5+ δ} (x=0, 0.1, 0.15, 0.3) extracted from ECR experimental data at 750 °C.

	Operating Temperature											
Step change	400 °C		500 °C		600 °C		700 °C		750 °C		800 °C	
of oxygen partial pressure	k _{ex} (10 ⁻⁶ m s ⁻¹)	D _{chem} (10 ⁻¹⁰ m ² s ⁻¹)	k _{ex} (10 ⁻⁶ m s ⁻¹)	D _{chem} (10 ⁻⁷ m ² s ⁻¹)	k _{ex} (10 ⁻⁶ m s ⁻¹)	D _{chem} (10 ⁻⁷ m ² s ⁻¹)	k _{ex} (10 ⁻⁶ m s ⁻¹)	D _{chem} (10 ⁻⁷ m ² s ⁻¹)	k _{ex} (10 ⁻⁶ m s ⁻¹)	D _{chem} (10 ⁻⁷ m ² s ⁻¹)	k _{ex} (10⁻⁶ m s⁻¹)	D _{chem} (10 ⁻⁷ m ² s ⁻¹)
$H_2 \rightarrow$ $H_2 + N_2$	0.59	3.72	1.31	1.5	2.31	2.74	3.02	3.48	3.56	4.22	4.35	5.34
$H_2+N_2 \rightarrow H_2$	1.08	2.92	2.65	3.58	3.16	3.85	4.05	5.39	4.42	6.04	4.97	6.70

Surface exchange coefficient (k_{ex}) and bulk diffusivity (D_{chem}) of PrBaFe_(2-x)Sn_xO_{5+ δ} (x=0.1) extracted from ECR experimental data at 400 – 800 °C.

Arrhenius plots of (a) bulk diffusivity D_{chem} and (b) surface exchange coefficient K_{ex} of PrBaFe_(2-x)Sn_xO_{5+δ} (x=0.1) when the surrounding atmosphere changes from humidified H₂ to humidified mixture of 50%H₂+50%N₂ (black), and from humidified mixture of 50%H₂+50%N₂ to humidified H₂ (red).

Electrode	Electrolyte	Temperature (°C)	ASR (Ω cm²)	
Ni-YSZ	YSZ	800	0.16	
$La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3}$	YSZ	900	0.26	
$Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$	LSGM	850	0.21	
Sr ₂ MgMoO _{6-δ}	LSGM	850	0.48	
$Sr_2Co_{1.1}Mo_{0.9}O_{6-\delta}$	LSGM	800	~0.35	
La ₄ Sr ₈ Ti ₁₁ Mn _{0.5} Ga _{0.5} O _{38-δ} /YSZ	YSZ	850	~0.25	
Sr ₂ FeMo _{0.65} Ni _{0.35} O _{6-δ}	LSGM	850	0.106	
		800	0.163	
		750	0.290	
$PrBaFe_{1.9}Sn_{0.1}O_{5+\delta}$	LSGM	850	0.095	
		800	0.141	
		750	0.285	

 Comparisons of ASRs of the typical anode materials in literature with those of the PrBaFe_{1.9}Sn_{0.1}O_{5+δ} prepared in this work.

SOUTH CAROLINA

Performance of Hollow Fiber Membranes

SOUTH CAROLINA

NETL

- Novel single membranes with new material systems
 - Fabrications;
 - Permeation performance measurement and characterizations;
 - Stability test;
- Stack and module development:
 - Stack design and fabrication;
 - Performance testing
 - Characterizations;
 - Analysis and optimization

Acknowledgments

DOE/NETL Contract number: DE-FE0024059, DE-FE0031473

Post-docs and Graduates: Chunlei Ren Run Gan Myongjin Lee Chunyang Yang Guohui Dong Fei He Yangmei Jiang