

OTM Combined Reformer for IGCC Power Systems

DOE/NETL Cooperative Agreement DE-FE0023543

Juan Li

DOE/NETL Gasification Systems and Coal & Coal-Biomass to Liquids Project Review Meeting Pittsburgh, PA • April 10, 2018

Project Overview

 OTM-Enhanced Coal Syngas for Carbon Capture Power Systems and Fuel Synthesis Applications \$10MM, 50% DOE share Oct. 1 2014 – June 30, 2018

Project Goal

Develop and demonstrate OTM converter which can enhance IGCC power cycle and improve syngas quality for liquids synthesis

Project Objectives

- Complete TEA of OTM IG-NGCC process with CO₂ capture
- Develop stable catalyst for coal syngas
- Target high pressure operation
- Develop OTM modules and demonstrate in small pilot scale test with coal syngas

Project Tasks

Task 1 – Project Management

Task 2 – Process Development and Techno-economic Analysis

- OTM-Enhanced IGCC w/capture
- OTM-Enhanced IG-NGCC w/capture
- Advanced Coal + NG to liquids plant

Task 3 – Catalyst Integration and High Pressure Ceramics

- Catalyst development and integration
- High pressure ceramics development

Task 4 – Medium Pressure Module Integration

- Panel array module level with NG and simulated coal syngas
- Performance of OTM, catalyst, and module seals

Task 5 – Small-Pilot Scale Test of OTM Converter and TDA CO₂ Separation Technology

- Modification of OTM development system for larger capacity
- Integration with TDA's WGS/CO₂ capture system

Reactively-Driven Oxygen Transport Membranes

Praxair OTM Syngas Technology

Combined Reforming in a Single Integrated Efficient Package

OTM-Enhanced IG-NGCC Concept (Coal + NG)

Task 2 – IGCC Plants Performance and Cost

	IGCC Power Plants (550 MWe)						
Power Plants	TRIG Gasifier			E-Gas Gasifier			
	PRB Coal			Illinois #6 Coal			
	DOE Case S2B ^{**}	OTM IGCC		DOE Case 4 [*]	OTM IGCC	OTM IG- NGCC	
Fuel Feed	100% Coal	100% Coal		100% Coal	100% Coal	10% NG (HHV) + Coal	
OTM O ₂ / Cryo O ₂	0%	12%		0%	11%	17%	
Carbon Capture Rate	83.2%	92.1%		90.4%	90.9%	90.9%	
Net Plant Efficiency (HHV)	31.8%	34.9%		31.0%	34.4%	35.4%	
COE, \$/MWh	\$122.7	\$107.8		\$139.1	\$127.7	\$124.2	
CO₂ Captured Cost, \$/tonne	\$46.1	\$28.3		\$55.7	\$46.3	\$44.2	

Enabling TRIG gasifier IGCC to achieve 90%+ carbon capture rate

- 10% 14% increase of plant net efficiency
- 8% 12% reduction of cost of electricity
- 17% 39% reduction of carbon capture cost

* NETL Cost and Performance Baseline for Fossil Energy Plants, Vol 1, Rev 2a, 2013. ** NETL Cost and Performance Baseline for Fossil Energy Plants, Vol 3a, 2011.

Task 2 – CTL Plants Performance and Cost

CTL Plants	DOE CTL Baseline w CO ₂ Vent*	OTM CTL w CO ₂ Vent	
Total Production of FT Liquids, bpd	50,000	50,000	
Fuel Feed	100% Coal	23% NG (HHV) + Coal	
Plant Thermal Efficiency (HHV)	54.0%	55.8%	
% Carbon Conversion to FT Liquids	41%	45%	
NG Price (\$/MMBtu)	No impact on COP	\$3.0	\$6.13
COP FT Diesel, \$/bbl _{FTD} **	\$123.1	\$109.9	\$117.6

- 3% increase of plant thermal efficiency
- 9% increase of carbon-to-liquids conversion
- 5% 11% reduction of cost of production

* NETL, Cost and Performance Baseline for Fossil Energy Plants, Vol 4, 2014. ** COP values are for financial structure with loan guarantees.

Integrated OTM Combined Reformer Panel

Scalable Module Design of OTM Combined Reformer

Task 3 – Development of Reformer Catalyst

Primary reformer: Structured catalyst substrate with high heat transfer

conventional catalyst substrate

PX spiral monolith

Secondary reformer: Cost-effective integration with OTM

highly porous structure

Down-selected suitable catalyst materials

- High methane conversion
- Long-term stability
- Coking resistance
- Contaminant tolerance

Task 3 — Impact of Coal Syngas Impurities

Task 3 — Mechanical Properties for High Pressure Operation our planet more productive

Task 4 – OTM Single Panel Test

Stable Operation and High CH₄ Conversion

Task 4 – OTM Oxygen Flux Degradation

Negligible Performance Degradation of OTM Panel Control Strategy Optimization

Task 5 – OTM Panel Array Scale Up

Replication of Ceramic Elements Facilitate Mass Manufacturing

Task 5 – OTM Pilot Scale System

New Reactor and Infrastructure for Commercial Scale Panel Operation

Task 5 – Fuel Test of OTM Pilot System

Reliable Startup and Operation of OTM Commercial Scale Panels

Task 5 — Small Pilot Scale Integration

Task 5 – Small Pilot Scale Integration

Summary

• OTM Combined Reformer Addition to IGCC Plant

- Improves net efficiency and carbon capture rate
- Reduces cost of electricity and CO₂ capture cost

OTM Combined Reformer Addition to CTL Plant

- Improves thermal efficiency and carbon conversion rate
- Reduces cost of production

OTM Component Development

- Reformer catalysts: demonstrated stable performance and impurity tolerance
- OTM and seals: demonstrated target burst pressure and creep life
- OTM panels: demonstrated >99% CH₄ conversion and stable performance under coal syngas/NG

OTM Pilot Scale System

- Upgraded existing OTM reactor
- Demonstrated reliable startup and control strategies for OTM double panels
- Will test OTM panels with TDA CO₂ capture unit in 2018 Q2

Development and Performance Targets are Met and/or Exceeded

Acknowledgements

This material is based upon work supported by the Department of Energy under Award Number DE-FE26-07NT43088 and DE-FE0023543. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and options of authors expressed herein do not necessarily state or reflect those of the United States government or any Agency thereof.

Thank you!

Backup Slides

Ceramic Membrane– Mass Produce 1,000's for a System

Isolation Valve Performance During a Test

Project Milestones

Milestone #	Milestone Title / Description	Estimated Completion Date	Actual Completion Date
1	Determine target operating conditions for OTM	12/31/2014	completed
2	Concept select OTM IG-NGCC flow sheet	11/30/2015	completed
3	Complete heat and material analysis for OTM IGCC case	01/31/2016	completed
4	Complete heat and material analysis for OTM IG-NGCC case	05/31/2016	completed
5	Complete analysis for IG-NG Coal-to-liquids plant	12/31/2016	completed
6	Evaluate performance of membrane at high pressure at target fuel conversion on simulated coal syngas	05/31/2016	completed
7	Commence creep/endurance tests at high pressure	12/31/2015	completed
8	Evaluate performance of module at intermediate pressure on test skid	05/31/2016	completed
9	Capital cost estimates and economics analysis complete	03/31/2017	completed
10	Start to integrate OTM converter with TDA CO ₂ separation system	09/30/2017	completed
11	evaluate performance of OTM converter with TDA CO ₂ separation system	06/30/2018	In progress