

# Pilot-Scale Testing of an Integrated Circuit for the Extraction of Rare Earth Minerals and Elements from Coal and Coal Byproducts Using Advanced Separation Technologies

PRINCIPAL INVESTIGATOR:

DOE Award Number: DE-FE0027035

Dr. Rick Honaker

Period of Performance: 3/1/2016 – 2/28/2020

University of Kentucky

NETL Program Manager: Charles Miller

2018 Project Review Meeting
Rare Earth Elements Research Portfolios
Tuesday, April 10, 2018



## **Project Objectives**

- Develop, design and demonstrate a pilot-scale processing system for the efficient, low-cost and environmentally benign recovery of high-value rare earth elements (REEs) from coal and coal byproducts.
  - Integrate both physical and chemical separation processes;
  - Pilot-scale circuit will have a dry solids feed rate of ¼-ton/hr (0.23 tonne/hr) and will be capable of producing 5 7 pounds (2.3 3.2 kg) per hour of combined concentrates with purity levels of at least 2% total REEs by weight;
  - Technical and economic feasibility of the proposed system will be fully evaluated with respect to separation performance, throughput capacity, capital/operating costs, and environmental acceptability.
- The pilot-scale plant will be mobile and evaluated at two different locations and multiple feed stocks during the project period.

# **Phase 2 Budget Period 2 Schedule**

|      |                                                        |   | Q4 |   |   | Q1 |   |   | Q2 |   |
|------|--------------------------------------------------------|---|----|---|---|----|---|---|----|---|
|      |                                                        | 1 | 2  | 3 | 1 | 2  | 3 | 1 | 2  | 3 |
|      | E 2 BUDGET PERIOD 2 (Award to Shakedown/Commissioning) |   |    |   |   |    |   |   |    |   |
| Task | Description                                            | 0 | N  | D | J | F  | M | Α | M  | J |
| 1.0  | Project Management & Planning                          |   |    |   |   |    |   |   |    |   |
| 2.0  | Site Host Agreements                                   |   |    |   |   |    |   |   |    |   |
| 3.0  | Detailed Systems Engineering                           |   |    |   |   |    |   |   |    |   |
| 4.0  | Environmental Controls Assessment                      |   |    |   |   |    |   |   |    |   |
| 5.0  | Site Rehabilitation                                    |   |    |   |   |    |   |   |    |   |
| 6.0  | Bidding & Procurement                                  |   |    |   |   |    |   |   |    |   |
| 7.0  | Fabrication & Construction                             |   |    |   |   |    |   |   |    |   |
| 8.0  | Installation & Assembly                                |   |    |   |   |    |   |   |    |   |
| 9.0  | Systems Safety Analysis & Training                     |   |    |   |   |    |   |   |    |   |
| 10.0 | Startup & Shakedown                                    |   |    |   |   |    |   |   |    |   |

# Phase 2 Budget Period 3 Schedule

| PHAS | E 2 BUDGET PERIOD 3 (Initial Testing to Completion) |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   |   |   |   |     |
|------|-----------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|-----|---|---|---|---|---|---|-----|---|---|---|---|-----|
| Task | Description                                         | 0 | N | D | J | F | М | Α | М | J | J | Α | S | 0 | N [ | ) J | F | М | Α | М | J | J | A ! | 0 | N | D | J | F N |
| 1.0  | Project Management & Planning                       |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   |   |   |   |     |
| 2.0  | Environmental Monitoring & Management               |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   |   |   |   |     |
| 3.0  | Feedstock Collection & Preparation                  |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   |   |   |   |     |
| 4.0  | Exploratory Testing                                 |   |   |   |   |   |   |   |   |   |   |   |   | 1 |     |     |   |   |   |   |   |   |     |   | ļ |   | 1 |     |
| 5.0  | Test Plan Revision                                  |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   | İ |   | 耳 |     |
| 6.0  | Detailed Parametric Testing                         |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   |   |   |   |     |
| 7.0  | Optimization & Validation                           |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   | ļ |   |   |     |
| 8.0  | Provide Split Samples                               |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   |   |   |   |     |
| 9.0  | Secondary Feedstock Testing                         |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   |   |   |   |     |
| 10.0 | Plant Relocation & Recommissioning                  |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   | ļ |   |   |     |
| 11.0 | Modeling & Simulation                               |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   |   |   |   |     |
| 12.0 | Sample Analyses                                     |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   |   |   |   |     |
| 13.0 | Technical & Economic Analyses                       |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   | ļ |   |   |     |
| 14.0 | Commercialization Analysis                          |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   | ļ |   | 耳 |     |
| 15.0 | Decomissioning & Disposition                        |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   | İ |   | 1 |     |
| 16.0 | Phase 2 Summary Report                              |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |   |   |   |   |   |   |     |   |   |   |   |     |

# **Flowsheet Concept**



# **Hydrometallurgy Circuit**



#### **Solvent Extraction Circuit**



# **Solvent Extraction REE Products**

|                       |                                                           | REE Oxid | le (ppm)     | (ppm)  |  |  |  |  |  |  |  |
|-----------------------|-----------------------------------------------------------|----------|--------------|--------|--|--|--|--|--|--|--|
| Rare Earth<br>Element | Fire C                                                    | lay      | W. KY No. 13 |        |  |  |  |  |  |  |  |
| Ekinene               | Middlings                                                 | TUF      | Middlings    | TUF    |  |  |  |  |  |  |  |
| Scandium              | 14                                                        | 0        | 0            | 0      |  |  |  |  |  |  |  |
| Yttrium               | 8,157                                                     | 22,050   | 34,438       | 22,579 |  |  |  |  |  |  |  |
| Lanthanum             | 82,149                                                    | 28       | 757          | 128    |  |  |  |  |  |  |  |
| Cerium                | 250,277                                                   | 527      | 7,586        | 1,694  |  |  |  |  |  |  |  |
| Praseodymium          | 24,421                                                    | 150      | 1,142        | 465    |  |  |  |  |  |  |  |
| Neodymium             | 98,745                                                    | 545      | 6,021        | 3,441  |  |  |  |  |  |  |  |
| Samarium              | 22,372                                                    | 375      | 4,160        | 3,277  |  |  |  |  |  |  |  |
| Europium              | 1,584                                                     | 98       | 1,380        | 1,083  |  |  |  |  |  |  |  |
| Gadolinium            | 13,921                                                    | 950      | 9,152        | 8,280  |  |  |  |  |  |  |  |
| Terbium               | <dl< td=""><td>360</td><td>1,519</td><td>1,413</td></dl<> | 360      | 1,519        | 1,413  |  |  |  |  |  |  |  |
| Dysprosium            | 6,472                                                     | 4,475    | 11,883       | 11,295 |  |  |  |  |  |  |  |
| Holmium               | 1,199                                                     | 727      | 1,388        | 1,268  |  |  |  |  |  |  |  |
| Erbium                | 700                                                       | 2,392    | 3,149        | 2,306  |  |  |  |  |  |  |  |
| Thulium               | 1,282                                                     | 442      | 603          | 269    |  |  |  |  |  |  |  |
| Ytterbium             | <dl< td=""><td>1,228</td><td>1,558</td><td>329</td></dl<> | 1,228    | 1,558        | 329    |  |  |  |  |  |  |  |
| Lutetium              | 391                                                       | 123      | 171          | 23     |  |  |  |  |  |  |  |
| Total                 | 511,685                                                   | 34,470   | 85,357       | 57,850 |  |  |  |  |  |  |  |

# **Selective Precipitation Option**



- 80% total REE recovery;
- 52% manganese oxide, 60% copper sulfide and 60% zinc sulfide;
- Achieved using a continuous process in a lab environment;
- Patent application submitted.

| REEs   | Content (%) |
|--------|-------------|
| Sc2O3  | 0.05        |
| Y2O3   | 21.05       |
| La2O3  | 9.11        |
| CeO2   | 23.32       |
| Pr6O11 | 4.13        |
| Nd2O3  | 17.67       |
| Sm2O3  | 5.62        |
| Eu2O3  | 1.24        |
| Gd2O3  | 6.41        |
| Tb2O3  | 0.89        |
| Dy2O3  | 4.84        |
| Ho2O3  | 0.81        |
| Er2O3  | 1.55        |
| Tm2O3  | 0.19        |
| Yb2O3  | 0.92        |
| Lu2O3  | 0.17        |
| Total  | 97.97       |

## **Configuration Options**







## **Configuration Options**







# **Process Train Layouts**

- 1.00 Preconcentration (Mine Site)
- 2.00 Size Reduction/Liberation
- 3.00 Physical Separation
- 4.00 Acid Leaching
- 5.00 Solvent Extraction & Precipitation
- 6.00 Chemical Storage
- 7.00 Rare Earth Mineral Concentration



# **Construction work in progress...**







#### (Elevation View)



#### (Simplified Plan View)































West Kentucky No. 13 – Bed Strata X-Ray Analysis











# 2.00 - Size Reduction/Liberation

#### (Elevation View)



#### (Simplified Plan View)



25

# 2.00 - Size Reduction/Liberation

#### (Elevation View)









# 2.00 - Size Reduction/Liberation



# 3.00 - Physical Separation

#### (Elevation View)



#### (Simplified Plan View)



# 3.00 – Physical Separation



# 3.00 - Physical Separation



## 4.00 - Acid Leaching



#### (Simplified Plan View)



# 4.00 – Acid Leaching





# 4.00 – Acid Leaching



# 4.00 - Acid Leaching



# 4.00 - Acid Leaching (Contaminant Bleed)



# 5.00 - Solvent Extraction/Precipitation



#### (Simplified Plan View)



Estimated Area = 45 ft x 6 ft

## 5.00 - Solvent Extraction/Precipitation







# 5.00 - Solvent Extraction/Precipitation



# 5.00 – Solvent Extraction/Precipitation



# 5.00 – Solvent Extraction/Precipitation



## 6.00 – Chemical Storage



#### (Simplified Plan View)



#### (Elevation View)



#### (Simplified Plan View - Alternative Configuration)



30 ft x 6 ft Bay (Mobile Towable Trailer)

#### (Elevation View)













# **Site/Property Layouts**

#### **Dotiki Mine Site**

Site Photographs
Process Train Layouts
Berms/Drains
Electrical Services
Miscellaneous



# **Dotiki – Building Structure**









# **Dotiki – Building Floor Plan**



## **Dotiki – Accommodations**





# **Dotiki – Working Area**



# **Dotiki – Module Configuration**



## **Summary**

- Mobile ¼-tph REE pilot-plant will be operational by July 2018.
- System will be tested on multiple feed stocks at two locations.
- Plant consists of seven distinctly different process bays.
- Analyses capabilities will be available onsite to improve efficiency of test program.
- Aspen will be used for systems analyses and a techno-economic study.

