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• What is IDAES?
– Next Generation Multi-Scale Modeling & Optimization Framework

• Bridges the gap between process simulators and algebraic modeling languages

– Improving the efficiency and reliability of the existing fleet
– Accelerating the development of advanced fossil energy systems

• Why should you care?
– Enables optimization of innovative steady-state and dynamic processes 

• Flexible design approaches, which enable optimization over broad range of conditions

– Extensible, equation-oriented process model library 
– Enables rigorous large-scale mathematical optimization

• How can you be involved?
– Stakeholder Advisory Board
– Open Source Release

Overview
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The IDAES Modeling and Optimization Motivation & Approach
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• Challenge: Develop and utilize multi-scale, simulation-based. 
computational tools and models to support the design, 
analysis, optimization, scale-up, operation and 
troubleshooting of innovative, advanced fossil energy systems

• Next generation modeling and optimization platform
– Current tools insufficient to address demands of integrated 

systems

– Need a more flexible and open modeling environment 

• Key capabilities
– Process Synthesis, Integration, and Intensification

– Process Design and Optimization

– Process Control and Dynamics

– Supports advanced solvers and computer architecture

– Multi-scale modeling capabilities

– Comprehensive, end-to-end uncertainty quantification

– Complete provenance information

– Couple with energy market models

– Open source

Development Of Innovative Advanced Energy Systems 
Through Advanced Process Systems Engineering

Improve efficiency and reliability of existing plants
Accelerate innovation 
• Identify technology solutions in the context of the full energy portfolio
Focus and prioritize R&D at low TRLs
• Assess new concepts using optimization tools to enable prioritization 

of research areas
• Chemical Looping, DPE, sCO2
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Solvers and Computational Platforms

Algebraic Modeling Language
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• March 31, 2018: CCSI Toolset Open Source Release

• May 23-24 @ Washington, DC. 

– First major stakeholder meeting.

• June 30: Major (limited) release of IDAES software (1.0)

• July 1-5 @ San Diego, PSE2018 conference.

– 10+ papers and plenary talk

• Nov. 1-2 with AIChE Mtg (Pittsburgh). 

– 2nd major stakeholder meeting

• Dec. 31: Minor release (1.1) – Initial publicly available release

2018 Calendar Summary
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ALAMO Python Module

Iteration ࡺ ࢒ࢇ࢜ࡾ
૛ ࢼ ૙

૚ ૚ૠ ૙. ૞૟ 2

૛ ૛૜ ૙. ૟૚ 3

૜ ૜૚ ૙. ૢ૛ 11

૝ ૜ૠ ૙. ૢૡ 6

Third 
Iteration

Final 
Iteration

Second 
Iteration

First 
Iteration
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Simulator Model Building - Alamo Solvers

Corrupted Six-Hump Camel Function

ࢌ ࢞ ൌ ૝ െ ૛. ૚࢞૚
૛ ൅

૚࢞
૝

૜
૚࢞

૛

൅࢞૚࢞૛ ൅ ૛࢞
૛ ૝࢞૛

૛ െ ૝ ൅ ࣕ

Known Minimum
݂ 0.0898, െ0.7126 ൌ െ1.0316

Surrogate Minimum
݂ 0.0881, െ0.7114 ൌ െ1.0291



Tools for Kinetic Property Model

Reaction Identification and 
Parameter Estimation

Elucidate unknown kinetics of chemical reactions 
occurring in a given reactor

Refine existing models through simultaneous 
consideration of existing and alternative forms

https://www.netl.doe.gov/research/coal/energy-systems/advanced-combustion/clc
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Illustrative Example
Reaction network 
(11 species and 6 reactions)

ா

௔ௗ௦

Rate laws 
(1- through 4-body interactions)

• Easy problem
– Given network and laws, calculate species concentrations

• Our problem
– Find network and laws that match measurements
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• 33 possible reactions considered
– Reversible and irreversible mass action kinetics

– Homogeneous and heterogeneous catalysis

• Simultaneous identification and estimation
– 100 binary variables, 858 continuous variables, solved 

in 350 seconds using BARON 17.1.2

Parameter Estimates

ො૚ܚ ො૛ܚ ො૜ܚ ො૝ܚ ො૞ܚ ො૟ܚ

࢐෡࢑ 12.01 േ 0.2 9.1 േ .01 6.9 േ 0.11 20 േ 2.0 5.1 േ 0.1 0.99 േ 0.01

࢐࢑ 12 9 7 20 5 1

෡୨ࡱ 1001 േ 40 5012 േ 41 6955 േ 43 4010 േ 22 3531 േ 56 1986 േ 31

࢐ࡱ 1000 5000 7000 4000 3500 2000
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Experimental Case Study

• Goal: Identify mechanisms and 
estimate kinetic parameters in both 
reactors

• Experimental details
– Fuel reactor ( ) in methane
– Air reactor ( )
– Two catalyst: ଶ ଷ, ଶ

• RIPE methodology
– Dynamic problems require Alamo to 

estimate conversion profile
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Ipsakis, Dimitris, et al. "Reduction and oxidation kinetic modeling of NiO-based oxygen transfer 
materials." Chemical Engineering Journal 308 (2017): 840-852.



• User supplied functional form for and 

• 19 possible rate forms included in superset

Application of RIPE
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Embedded use of Alamo
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RIPE Solution Statistics
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Accurate kinetic parameters with associated confidence intervals

Catalyst ሻࢄሺࢌ ࢑ ൅/െ ሻࢋ࢚ࢇ࢘૛ሺࡾ ૛ࡾ ࢄ

ଶܱଷ݈ܣ/ܱ݅ܰ ܺሺ1 െ ܺሻ 5.62 0.31 0.854 0.99

*ଶܱଷ݈ܣ/ܱ݅ܰ 4 1 െ ܺ െ log 1 െ ܺ
ଷ
ସ 0.62 <0 0.98

ܱܰ݅/ܶ݅ ଶ
3
2

1 െ ܺ െ ln 1 െ ܺ
ହ
଺ 1.65 0.03 0.96 0.99

ܱܰ݅/ܶ݅ ଶ* 2 1 െ ܺ െ log 1 െ ܺ
ଵ
ଶ 1.66 <0 0.98

Oxidation Kinetic Parameters

Catalyst ሻࢄሺࢌ ࢑ ൅/െ ሻࢋ࢚ࢇ࢘૛ሺࡾ ૛ࡾ ࢄ

ଶܱଷ݈ܣ/ܱ݅ܰ 1 െ ܺ 0.79 0.04 0.85 0.99

*ଶܱଷ݈ܣ/ܱ݅ܰ 1 െ ܺ
ଶ
ଷ 0.77 0.68 0.99

ܱܰ݅/ܱܶ݅ଶ 1 െ ܺ
ଶ
ଷ 1.2 0.14 0.61 0.99

ܱܰ݅/ܱܶ݅ଶ* 1 െ ܺ
ଶ
ଷ 1.15 0.6 0.99

Reduction Kinetic Parameters



• Pyomo models are automatically generated
– Data-driven algebraic models for use in the IDAES framework

• EOS models, Kinetic network, or data-driven surrogate models

– Provenance for updating and tracking solution quality

• Adaptive design of experiments
– Error maximization sampling extended acquisition of new data

• Sensitivity of estimated parameters
– Interfacing with UQ to facilitate propagation of uncertainty 

through IDAES framework

Modeling Tool Contributions
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• CLC provides a variety of benefits over 
traditional fossil fuel combustion
– Easy recovery of CO2 from waste streams
– Potential for co-generation of H2 for liquid 

fuel (via SR-CLC)
– Access to higher thermodynamic 

efficiencies

• Performance is currently limited by the tradeoff 
of reactivity against stability for oxygen 
carrier being cycled through the reactors
– High activity oxygen carriers tend to 

experience high attrition
– Low activity oxygen carriers will require large 

solids recycle streams

Importance of Oxygen Carriers for CLC
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L.F. de Diego et al., Fuel, 86(7-8):1036–1045, 2007

J. Adanez et al., Progress in Energy and Combustion Science, 38(2):215–282, 2012.



• Large body of experimentally synthesized 
oxygen carriers
– Ni/NiO
– Fe/FeO/Fe2O3

– BaFeO3 (perovskite)
• Experimental studies focused on 

characterizing oxygen carriers before & 
after time on stream

• Novel atomic-scale support & dopant 
interactions lead to best performance
– Ni/NiAl2O4

– BaFe1-xInxO

Current Status of Oxygen Carrier Development

20

Cabello A., Gayan P., Garcia-Labiano F., Diego L. F. de, Abad A., Izquierdo
M. T., Adanez J., Applied Catalysis B: Environmental, 147:980–987, 2014. 

Potential for advances via 
atomic-scale materials design



Materials Design via Mathematical Optimization

• Current design paradigms:
– Experiments & expert intuition
– Database interpolation

• Proposed paradigm: Design bottom-up by explicitly arranging building blocks of matter via 
mathematical optimization, supporting high-throughput discovery of materials

Mathematical optimization provides a rigorous, systematic 
way to explore the entire material design space

Conceptual Design Process Mathematical Optimization Model

Material Information
Design Variables & 

Constraints
Optimal Solutions &

Novel Materials
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BaFe1-xInxO3-δ Perovskite

 Interesting oxygen carrier properties

– Fast reduction and oxidation

– Temperature tunability based on In content

 Key Hypothesis:

– In atom weakens Fe-O bonds of neighboring B-
sites

 Key Metric:

– Oxygen excess energy ≈ perovskite reducibility

 Can we identify patterns of In doping that minimize 
oxygen excess energy?

Lekse J. W., Natesakhawat S., Alfonso D., Matranga C., Journal of Materials Chemistry A, 2(7):2397–2404, 2014. 

Ideal Perovskite 
Unit Cell

B-Site (Fe or In)

A-Site 
(Ba)

Oxygen
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Defining a Perovskite Motif

Perovskite supercell, focused 
on a particular oxygen

Perovskite supercell, focusing 
on neighboring B-sites 

Chosen Motif: Ten nearest B-sites to central oxygen
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Automatically Generated Motifs & Supercells
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74 Rotationally-unique motifs identified
Central Oxygen
Other Oxygen

Fe
In



Distribution of Oxygen Excess Energies

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0 10 20 30 40 50 60

∆
G

va
c

 @
 9

73
K

 (
e

V
)

Sorted Index

25

DFT Calculations using DFT+U in VASP by: Dominic Alfonso, De Nyago Tafen @ NETL

Iteratively improve detail 
of DFT evaluations to 
prove convergence to 

“true” evaluation

Oxygen Excess Energy 
@ 0K

Vacancy Formation 
Energy @ 973K

(near process conditions)



Ranking of Oxygen Excess Energy

Oxygen sites directly next to Indium tend to have higher excess energy
Oxygen sites with Indium in the second-nearest shell have lower excess energy
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5 Motifs with Lowest: (i.e., easier to remove oxygen)

-1.51 eV -1.47 eV -1.47 eV -1.31 eV -1.31 eV

5 Motifs with Highest: (i.e., harder to remove oxygen)

-0.31 eV -0.31 eV -0.28 eV -0.20 eV 0.09 eV

@ 973K

@ 973K



Dopant Design Optimization Model 

Total number of targeted oxygen conformations

Indication of target oxygen conformations

Local dopant concentration bounds

Global dopant concentration bounds
Presence of 

oxygen 
conformation

Presence of 
dopant
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Based on optimization model developed in previous milestone, published in:

Hanselman C. L., Gounaris C. E., “A Mathematical Optimization Framework for the Design of Nanopatterned
Surfaces,” AIChE Journal, 62(9):3250–3263, 2016. 



Example Results: 4x4x4 Supercell
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• Maximally pack the three 
best oxygen motifs

• Able to achieve 50% of 
oxygen sites as target motifs



• Compare performance of optimized designs against randomly-formed 
dopant patterns

• Solve dopant design model over larger crystal domains

– Resulting in higher-quality material patterns

– Requiring development of effective mathematical decomposition 
strategies

• Model stability of perovskite structure more explicitly in model

– Resulting in guaranteed stable designs

– Requiring translation of material stability into mathematical constraints

Next Steps
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30

Key Benefit: Greater understanding of perovskite dopant impact on 
reducibility; Targets for experimental synthesis

• Identified relevant motifs and developed framework to evaluate perovskite 
oxygen excess energy

• Developed several approaches for linking perovskite reducibility to 
dopant placement

• Generated mathematical optimization model to optimize dopant placement 
with respect to oxygen excess energy

Perovskite-Specific Conclusions



• Created framework for identifying, codifying, and enumerating material motifs

• Developed routines for identifying simplified structure-function 
relationships that can be embedded directly into mathematical optimization 
models

• Established an application-generic mathematical optimization model to 
optimize placement of desirable features in a nanostructured material

31

Key Benefit: Mathematical optimization accelerates discovery of 
materials for efficient, clean energy production

Approach-Generic Conclusions
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Energy Infrastructure Planning Model

• Evaluate the changes in generation and transmission infrastructure required to meet the projected demand 
for electricity over the next few decades.

– Support decision-making process in the energy sector.

– Evaluate various scenarios of future energy demand growth.

– Ensure robustness of the energy system.

– Study the impact of resource cost trends and policy shifts.

• Test the deployability of the new technologies proposed by IDAES under different scenarios.



Proposed planning problem

A set of existing and potential generators with the 
respective:
• energy sources (coal, natural gas, nuclear, solar, wind) 
• generation technology
• location, if applicable
• nameplate capacity
• age and expected lifetime
• CO2 emission 
• operating costs
• investment cost, if applicable
• operating data

• thermal generators: ramping rates, operating 
limits, spinning and quick-start maximum reserve 
(unit commitment data)

• renewable generators: capacity factor 

Given an area with:
Traditional thermal 

generators
Renewable 
generators

Advanced 
Energy System



Proposed planning problem

A set of potential storage devices, with specified:

• technology:

• lithium-ion, lead-acid, and flow batteries

• investment cost,

• power rating,

• rated energy capacity,

• charge and discharge efficiency,

• storage lifetime. 

Given an area with:
Traditional thermal 

generators
Renewable 
generators

Advanced 
Energy System

Storage devices



Proposed planning problem 

Given:

• Projected load demand over the time-horizon at each 
location

• Distance between locations
• Transmission loss per mile

Find:

• The location, year, type and number of generators 
and storage devices to install;

• When to retire the generators;
• Whether or not to extend their lifetime; 
• Power flow between locations; 
• Approximate operating schedule; 

in order to minimize the overall operating and 
investment costs

Traditional thermal 
generators

Renewable 
generators

Advanced 
Energy System

Storage devices



Unit commitment of thermal units 
Natural Gas and Coal

What is unit commitment?

• “Unit commitment (UC) is an optimization problem 
used to determine the operation schedule of the 
generating units at every hour interval with 
varying loads under different constraints and 
environments.”

Why to include unit commitment in a 
planning model?

• Accounts for the need of fast ramping rates in a 
system with high renewable penetration.

• Helps ensuring flexibility and robustness of the 
system.

• Accounts for startup cost in the total cost.

OFF OFFON

tt - 1 t + 1

tP

Startup Shutdown

Very important for systems with increasing 
share of renewables



Better than currently available commercial software
(e.g., Markal, TIMES, ReEDS)    .

• Mixed-integer Linear Programming model. 
– Helps determine what is built when over long 

term horizon (20-40 years)

• Allows hourly and sub-hourly representation of 
time.
– Captures the dynamics of the renewable 

generation and load demand.
– Includes unit commitment of thermal 

generators.

• Detailed representation of retirement and retrofit
of old generators
– Important for regions with aging generation 

and transmission infrastructure (e.g., United 
States).

• Open source.

– Researchers will have access to all the code 
and will be able to modify it within the platform.

• Allows the solution of large instances without the 
need of a supercomputer.

– Due to algorithmic strategies (Nested 
Decomposition algorithm).

• As a future step, it will be extended to handle 
uncertainties in:

– fuel price;

– renewable generation;

– new technology costs and performance.



Modeling Challenges

• Very large-scale models (million to tens of millions of equations and variables)
• Performance/cost targets are not easy to come up with

– These models have million co-depended parameters regarding different aspect such as investment 
and operations cost in the generation and transmission level, load demand, renewable source 
availability, and environmental constraints.

• Temporal multi-scale aspect of 

the problem:

– For a 30 year horizon, there are 

262,800 hourly sub-periods of time

• Spatial multi-scale aspect of the 

problem

– Large number of potential locations

– Large number of generators

Hourly time 
resolution

Long term 
investment plans

Large region Individual generators



Modeling Strategies 

• Time scale approach:

– d representative days per year with hourly level 
information

• Region and cluster representation

– Area represented by a few zones 

– Potential locations are the midpoint in each 
zone

– Clustering of generators*

• Transmission representation

– Flow in each line is determined by the energy 
balance between each region r.

*Palmintier, B.S., Webster M.D., Heterogeneous unit 
clustering for efficient operational flexibility modeling, 2014



MILP Multi-period Model

• Energy balance

• Capacity factor of the renewable generators

• Unit commitment constraints

• Operating reserve constraints

• Investment constraints.

• Generators balance

Objective function: 

Minimization of the net present cost over the planning horizon 

comprising:

• Operating, startup, investment and retrofit costs

• Fuel consumption

• Environmental costs (if applicable)

Nested Decomposition Algorithm

Basic Idea

• This algorithm decomposes the problem by time period,

which in this case is by year.

• It consists of Forward and Backward Passes.

• The Forward Pass solves the problem in myopic fashion

(1 year time horizon).

• The Backward Pass projects the problem onto the

subspace of the linking variables by adding cuts.

Multiple valid cuts to be chosen by the user.

Provides massive computational savings.

Formulation and Solution Strategy



Case Study: ERCOT (Texas)

• 30 year time horizon (1st year is 2015)

• Data from ERCOT database

• Cost information from NREL (Annual Technology Baseline (ATB) Spreadsheet 

2016

• All costs in 2015 USD

• Regions:

– Northeast (midpoint: Dallas)

– West (midpoint : Glasscock County)

– Coastal (midpoint: Houston)

– South (midpoint : San Antonio)

– Panhandle (midpoint : Amarillo)

• Fuel price data from EIA Annual Energy Outlook 2016 (reference case)

• Advanced fossil fuel data from Iyengar et al. (2014), and Newby and Keairns

(2013).

• Storage device data from Schmidt et al. (2017), and Luo et al. (2015).



ERCOT, 4 representative days per year
Discrete variables: 500,500

Continuous variables: 810,181

Equations: 1,730,491 

Solver: Gurobi

• Scenario 2: Carbon tax starting at $10/tonne in year 2020, and increasing linearly to $100/tonne in 2029.

• Scenario 1: No carbon tax.

Solution time

Full-space: 4.0 hours

Nested Decomposition: 2.8 hours

Solution time

Full-space: 10.1 hours

Nested Decomposition: 5.2 hours

Natural gas 
favored to handle 
renewable 
generation and 
load demand

Advanced fossil 
fuels, nuclear and 
storage favored 

instead of natural 
gas



Conclusions 

• Powerful multiscale optimization model for planning electric power infrastructures

• Potential for evaluating new IDAES technologies under a variety of scenarios.

• Massive computational savings through algorithmic improvements.

Future steps

• Improve the representation of the transmission.

• Test the model for other U.S. ISOs.

• Perform a sensitivity analysis with an actual technology developed by IDAES.

• Extend the formulation to multi-stage stochastic programming
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Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their 
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