
Rare earth recovery for clean technologies

Application of Biosorption for Rare Earth Recovery from Coal Byproducts

Yongqin Jiao Jiao1@llnl.gov 925-422-4482

LLNL-PRES-704608 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Rare Earth Elements are in high demand and there is an urgent need for domestic production

• Lanthanides + yttrium + scandium

Critical materials for electronics, renewable energy, and defense industries

Ce

140.12

Pr

140.91

Nd

144.24

LREE

IPm

La

138,91

Sm

Eu

Gd

Tb

Dy

(145) 150.36 151.96 157.25 158.93 162.50 164.93 167.26 168.93 173.04

Ho

Tm

Yb

Er

HREE

• Unstable global supply market for REEs

3 IIIB 21 50 44.956

39 Y 88.906 71

Lu

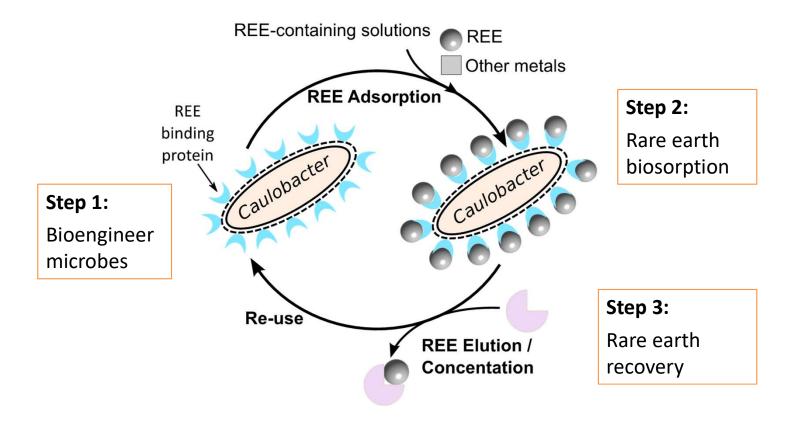
174.97

Project Goal

To develop a biosorption technology for rare earth recovery that is cost-effective and environmental friendly

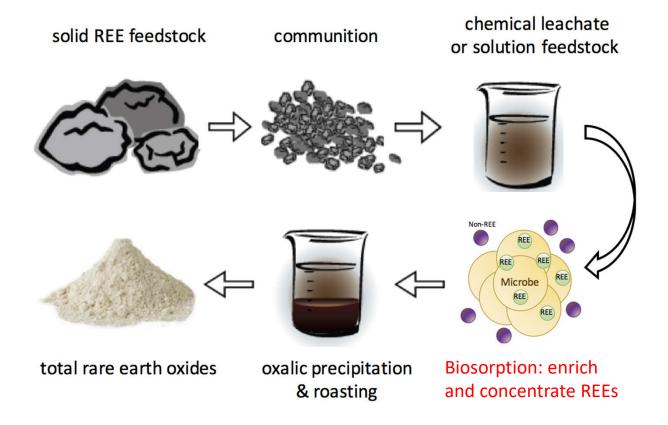
Post-combustion ash

- 120 M tons /yr production in US
- 45% recycled (mostly cement)
- Remaining 55% landfilled
- Contaminate source (As, Hg, Se, Cr, Pb)
- Relatively high REE (300- 500 ppm)

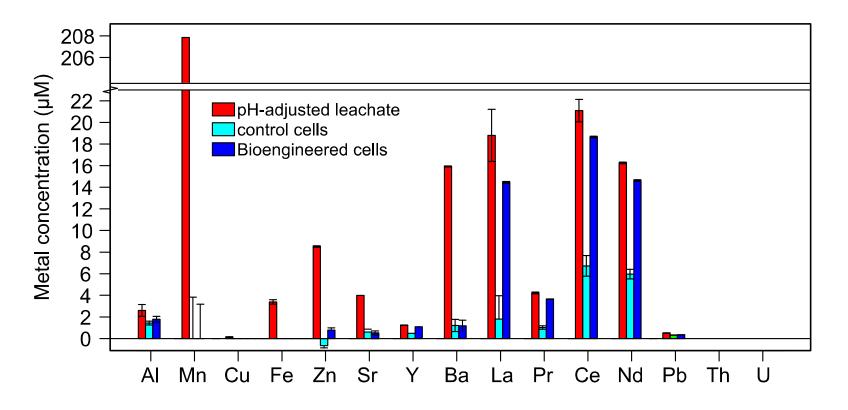


Pre-combustion coal byproducts

- Less well-characterized
- REE content varies greatly
- Ion-adsorption clays (easier to leach)

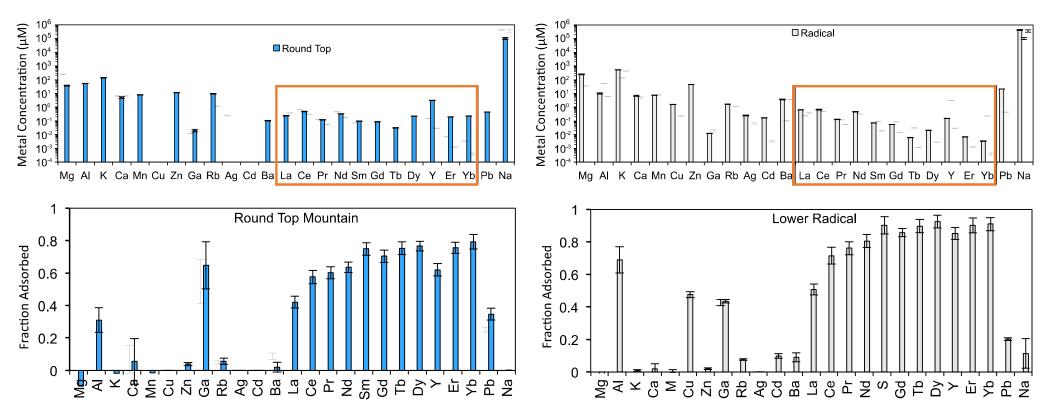

Provides a case study into the use of bioengineered microbes to extract useful elements from coal byproducts

CMI: a selective adsorption approach with bioengineered REE-adsorbing microbes



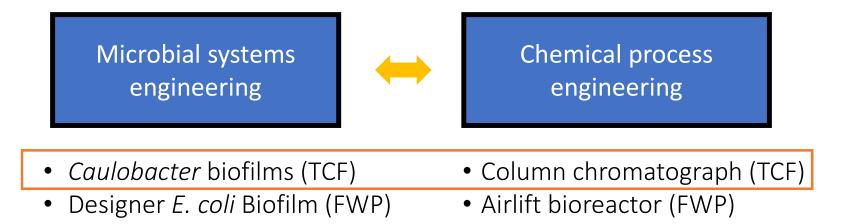
Leverages previous work funded by Critical Materials Institute, Patent Pending

Enable usage of low-grade REE sources for downstream REE purification



CMI: Bioengineered microbe outperforms control strain tested with sediment samples from Bull Hill

Park et al, Environ Sci Technol, 2016, 50 (5), 2735-42


CMI: Biosorption shows high selectivity for REEs with mine tailing leachates

7

Main objectives of TCF and FWP

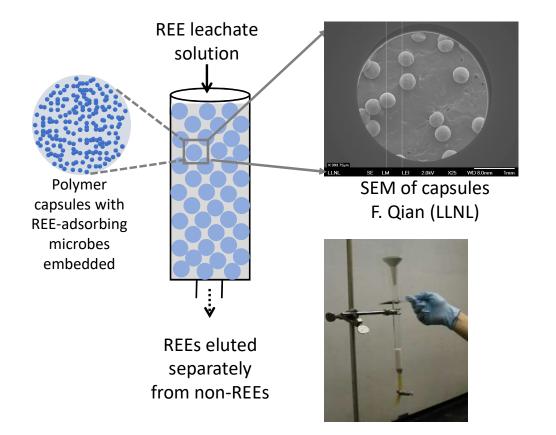
Improve scalability: develop cell immobilization strategies to enable flow through operations

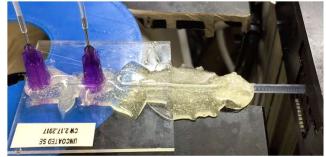
TCF tasks

- Test and compare surface attachment vs polymer embedding for cell immobilization;
- Conduct and compare basic economic predictions



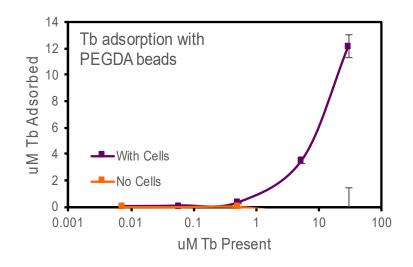
TCF: *Caulobacter* immobilization on biofilm carriers used by wastewater treatment plants



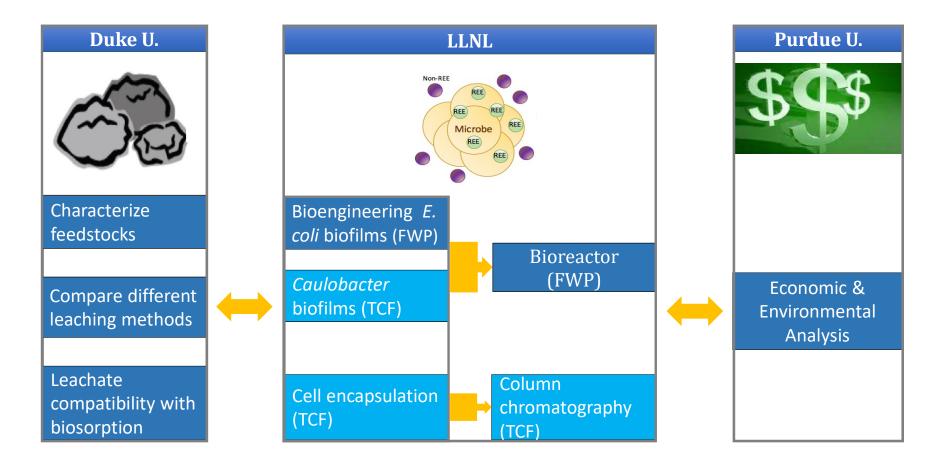

Mutag BioChip™ High surface area for biofilm growth (> 4,000 m²/m³)

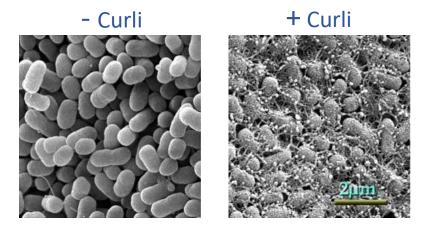
• Crystal violet staining revealed successful colonization of *Caulobacter*

TCF: Cell encapsulation and column chromatography



Capsule synthesis via a microfluidic device

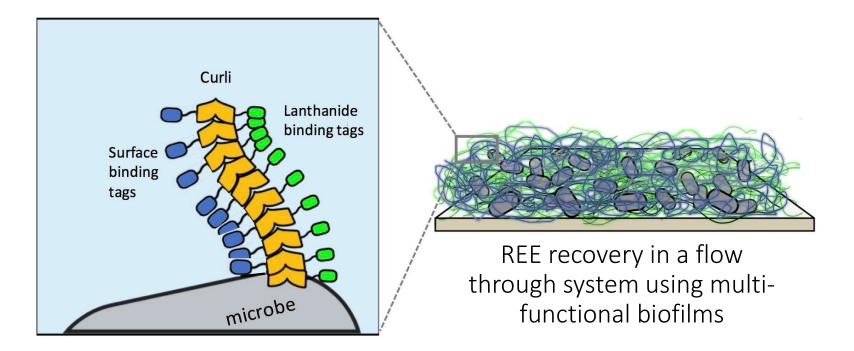

TCF: Cell encapsulation and column chromatography - progress to date


 PEGDA shows clean metal adsorption background

- ✓Choice of polymer material (PEGDA)
- ✓Increase throughput of capsule synthesis
- ✓Increase cell loading per capsule
- ✓Optimize bead size and pore size
- ✓ Tested adsorption capacity
- ✓ Tested adsorption kinetics (< 5 min)</p>

Major tasks for FWP (and TCF)

FWP: Bioengineering curli for surface attachment and REE recovery

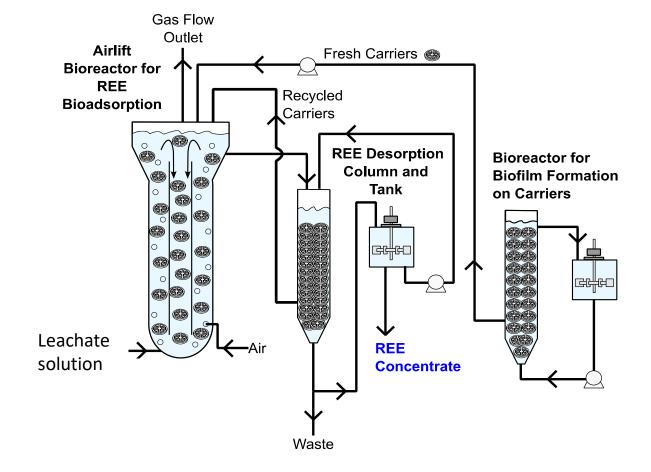


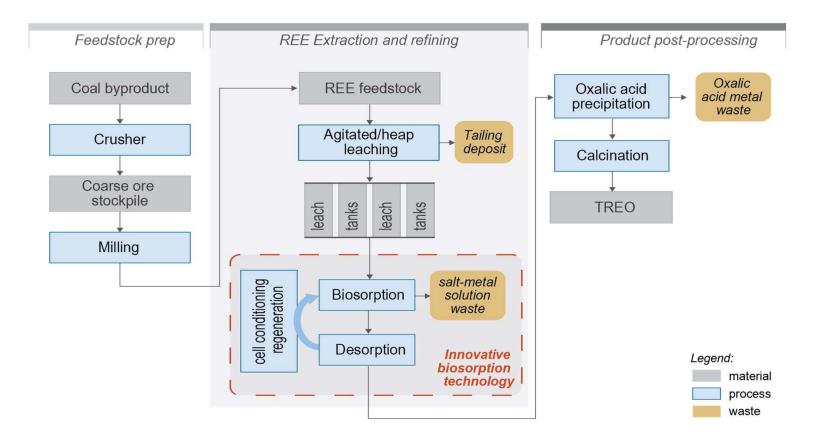
Electron microscopy images of bacterial curli

Ref: Lim et al. (2010). Journal of Microbiology and Biotechnology. 20 (1): 5–14.

- Curli are the major proteinaceous component of a complex extracellular matrix produced by many bacteria.
- Curli fibers are involved in adhesion to surfaces, cell aggregation, and biofilm formation.

FWP: Designer Biofilms: Bioengineering of curli with surface binding tags and lanthanide binding tags for surface attachment and REE recovery

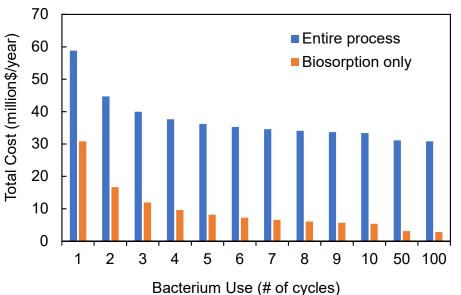

FWP: Test of an airlift bioreactor for REE recovery


10 mm

Biofilm carriers

Process flow for converting coal byproducts to Total Rare Earth Oxides

Preliminary techno-economic analysis


Feedstock: 50,000 tons/yr

REE content: 337-603 ppm

Unit production cost (\$/kg TREO)	136-227
Production cost (M\$/yr)	33
Current TREO basket price (\$/kg TREO)	306-368
Total revenue (M\$/yr)	69

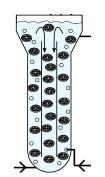
Processing Steps	Cost %
Pre-processing	81 %
Biosorption	16 %
Oxalic precipitation & Roasting	3 %
Total	100%

Sensitivity analysis Cost savings from bacteria recycle and reuse

Ref: Jin et al. ACS Sustainable Chem. Eng. 2017, 5, 10148–10155

Samples/feedstock to consider

Feedstock type	Location	REE content (ppm)	Power plant information	Other notes
Fly ash from ESP hopper, and holding pond	Central Appalachian coal basin	500-700	Kentucky, South Carolina power plants	Taggart et al (DOI: 10.1021/acs.est.6b00085)
Fly ash from ESP hopper	Power River Coal Basin	300-400	Texas, South Carolina power plant	Taggart et al
Fly ash from ESP hopper	Illinois Basin	400-500	Kentucky power plant	Taggart et al
Pre-combustion coal byproducts; Lignite	Navajo Indian Reservation in northern Arizona	100-300	N/A	Personal communication with Navajo Transitional Energy Company. Dan Laudal, personal communication
Ion adsorption clay	A surface mine, PA	300-500	N/A	Peter Rozelle et al DOI: 10.1007/s40553-015-0064-7
Acid Mine Drainage	Appalachian streams	Solution phase and sludge (100-300)	N/A	Paul Ziemkiewicz, West Virginia University


Industry engagement

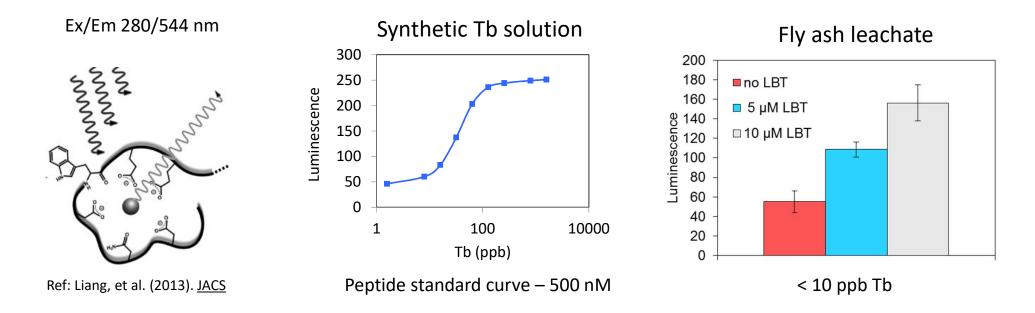
- Navajo Transitional Energy Company
- North American Coal Corporation

- Native American Mining Solutions LLC
- Innovation Metals Corporation
- Thor ORE

FWP: Progress to date

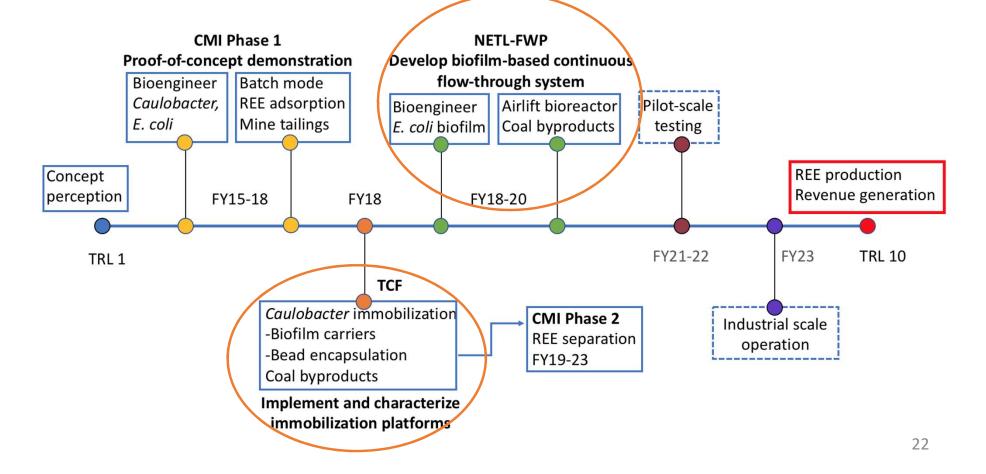
Leaching

E. coli biofilm


Bioreactor

TEA and LCA

Progress to date:

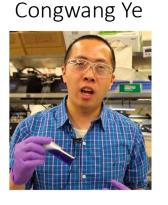

- \checkmark A postdoc candidate was identified with onsite interview scheduled in late April.
- \checkmark In process of completing the paper work for subcontracts to Duke U. and Purdue U.
- $\checkmark\,$ Bioreactor purchase to be made in April.
- ✓ A service proposal entitled "Microbe-Mineral Interactions for Rare Earth Recovery" was submitted to Environmental Molecular Sciences Laboratory (EMSL, a DOE-funded user facility).

INL led FWP: New sensing mechanisms for rare earth detection in coal and coal byproducts

- A collaborative project with INL (lead), Rutgers U., LLNL, UCD, and OLI Systems
- High throughput rapid screening of REEs in various solutions

Overview and outlook of LLNL-led biosorption technology development and commercialization plan

Acknowledgements


Research Team at LLNL

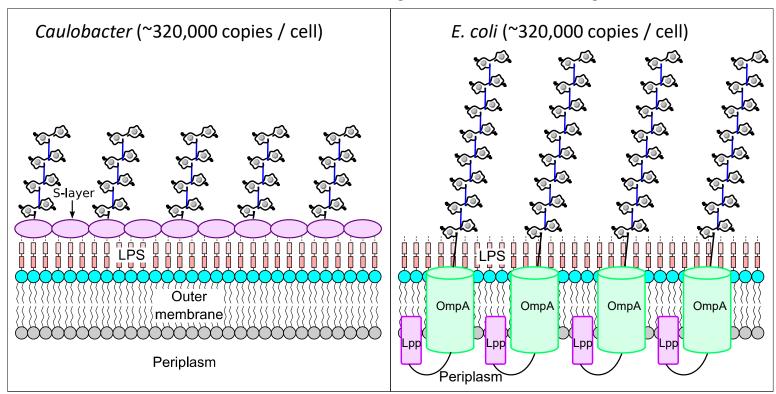
Dan Park

Co-Pl

Collaborators:

- Heileen Hsu-Kim (Duke U.)
- John Sutherland (Purdue U.)
- Yat Li (UC Santa Cruz)

Environmental Molecular Sciences Laboratory (EMSL)



Bioengineer bacteria to display lanthanide binding tags on cell surface

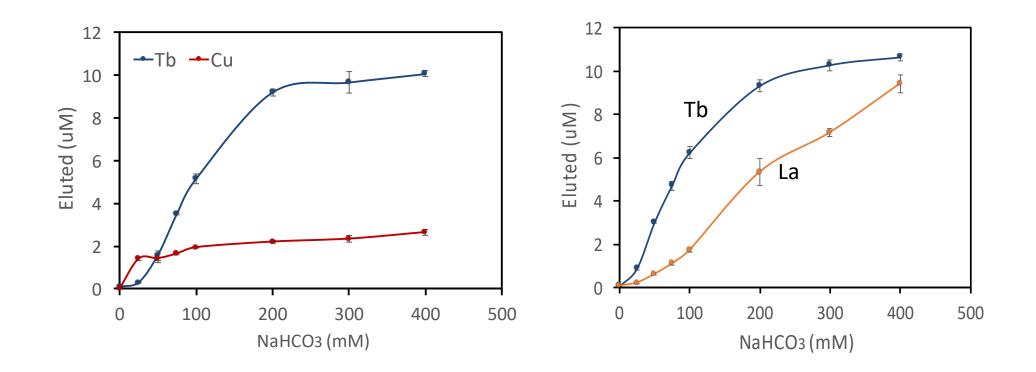
Anchor LBT on the cell surface using two different methodologies

Park et al *ES&T, 2016*

Park et al *ES&T, 2017*

25

Bioengineered microbes exhibit high selectivity for REEs of high criticality


Surface displayed LBTs are specific for REE metal ions

REE	K _D (μM)
Tb ³⁺	3.8 (0.3)
Al ³⁺	320 (80)
Fe ³⁺	210 (0.7)
Co ²⁺	976 (48)
Mn ²⁺ , Ni ²⁺	>4000
Mg ²⁺ , Zn ²⁺ , Ca ²⁺	>>10,000
Cu ^{2+*}	>300

Surface displayed LBTs preferentially bind REEs with smaller atomic radii

REE	K _D (μM)
Eu*	2.5 (0.2)
Yb	3.1 (0.3)
Dy*	3.2 (0.7)
Tb*	3.8 (0.3)
Y*	5.7 (0.1)
Nd*	13.3 (3.8)
Се	114 (53)
La	153 (55)

TCF: Cell encapsulation and column chromatography

Feedstock comparison of economic predictions for REE recovery based on biosorption technology

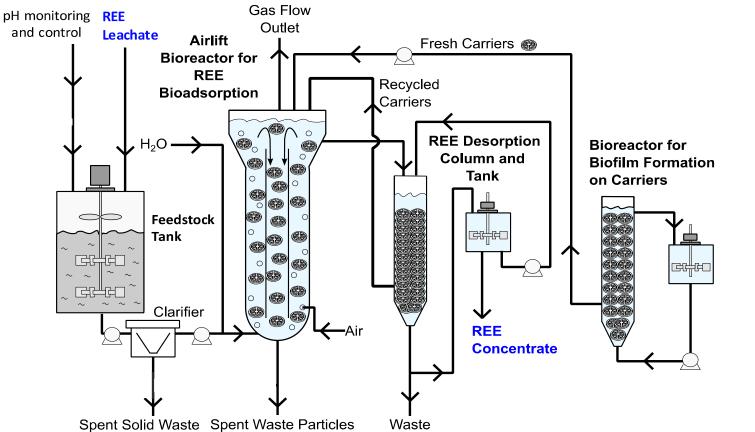
Feedstock Types	Coal ash	Mine tailings	Round Top	Bull Hill	lon exchange clay	Geothermal brine
REE content (ppm)	337-603	178-232	633	2,800	131-293	0.6-3.2
Unit production cost (\$/kg TREO)	136-227	318-410	142	25	256-546	130-574
Current TREO basket price (\$/kg TREO)*	306-368	65-150	28	13	13	17-22
TREO price increase required for break-even (x-times)	0.4-0.7	3-5	5	2	20-43	8-27
Capital cost (in \$ million) assumed life of 20 years	6	5	11	53	6-7	60

*We discounted our TREO price (at 95% or higher purity) by 30% from the 99+% pure individual REO prices. **Coal ash: 94-95% of the revenue is from Sc.

Ref: Jin et al, "Techno-Economic Assessment for Integrating Biosorption into Rare Earth Recovery Process". ACS Sustainable Chemistry & Engineering, 2017 28

Patent and Publications

- A US patent (application #15400948, pending) entitled "Engineered Microbes for Rare Earth Element Adsorption" was filed in January, 2017.
- Park *et al*, Recovery of Rare Earth Elements from Low-Grade Feedstock Leachates using Engineered Bacteria. *Environ Sci Technol*, 2017. DOI: 10.1021/acs.est.7b02414
- Jin *et al*, Techno-Economic Assessment for Integrating Biosorption into Rare Earth Recovery Process. *ACS Sustainable Chem. Eng.*, **2017**, 5 (11), pp 10148–10155.
- Park *et al*, Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags. *Environ Sci Technol*, **2016**, *50* (5), 2735-42


Major tasks for FWP and TCF

	FY18	FY19	FY20
Duke U.	 Characterize feedstocks Compare different leaching methods Leachate compatibility with biosorption 	 Select best-performing feedstock from each category Improve on leaching efficiency 	 Scale the preferred REE leaching method Supply REE-containing leachates for bioreactor runs
LLNL	 Bioengineering E. coli multi- functional <i>E. coli</i> biofilm E. coli biofilm stability test <i>Caulobacter</i> biofilm on carriers (TCF) Cell encapsulation and column chromatography (TCF) 	 REE biosorption with biofilm coated carriers Performance test with a bioreactor 	 Performance test of an airlift bioreactor Design and operational parameters for pilot scale
Purdue U.	Perform techno-economic analysis	Perform life cycle assessment	Reiterate TEA and LCA with data from bioreactor

Breakdown of LLNL REE Recovery Effort

	Microbial System Engineering	Chemical Engineering	Primary Focus	Feedstock Type
CMI (ends June 2018)	 <i>Caulobacter</i> S-layer <i>E. coli</i> OmpA 	 Couple bioleaching with biosorption 	 REE recovery Individual REE separation (CMI-Phase 2) 	 Mines and tailings Leachate of e- wastes
TCF (FY18)	<i>Caulobacter</i> S-layer	Biofilm carriersBeads encapsulation	REE recovery	Coal byproducts
NETL (FWP)	<i>E. coli</i> curli	Airlift bioreactor	REE recovery	Coal byproducts Mine Tailings Acid Mine Drainage
NETL (FY18-20) (INL led)	Cell free system	Biotic and abiotic ligand- based REE detection via luminescence	REE sensing and detection	Coal byproducts

FWP: Test of an airlift bioreactor for REE recovery

10 mm



Relevance to Industry Needs and FE objectives

Coal combustion residues:

- Bottom Ash
- Fly Ash
- Flue Gas Desulfurization (FGD) slurry wastes
- Pre-combustion coal

Secondary usage of coal byproducts

Production rate:

- ~120 million tons yr⁻¹ in U.S.
- (>400 million t yr⁻¹ in China)

~45% for beneficial use fly ash - concrete gypsum - drywall **Coal Combustion Residues:**

Lead	Rare Earth Elements
Chromium	Strontium
Arsenic	Boron
Mercury	Vanadium
Selenium	Radium

~55% must be disposed as solid waste

Application of Biosorption for REE Recovery from Coal Byproducts

Collaboration among 3 institutions

- LLNL: Curli biofilm engineering and REE recovery in airlift bioreactor
- Duke U: Feedstock characterization and leaching; ICP measurements
- Purdue U: Techno-economic analysis and life cycle analysis

Industry engagement

- Navajo Transitional Energy Company
- North American Coal Corporation
- Native American Mining Solutions LLC
- Innovation Metals Corporation
- Thor ORE

TCF: Tasks and deliverables

Tasks	Deliverables
 Test and compare surface attachment vs polymer embedding for cell immobilization; Conduct and compare basic economic predictions of the 2 methods for REE recovery 	 REE loading capacity per unit volume is measured and compared between the 2 methods REE adsorption/desorption kinetics is measured and compared Material cost is compared Bottlenecks and areas for optimization are identified Preliminary economic predications are derived and compared

FWP: Tasks and deliverables

Tasks	Deliverables
 Leaching method development Perform curli engineering Perform REE recovery in an airlift bioreactor Perform TEA and LCA 	 Biofilm engineering is completed and patented. Biofilm stability is tested REE adsorption per unit area is measured Performance of an airlift bioreactor is tested Design and operational parameters for pilot scale bioreactor are predicted. TEA and LCA for pilot and large scale bioreactor operation is completed.

Progress to date:

- ✓ A postdoc candidate was identified with onsite interview scheduled in late April.
- ✓ Bioreactor purchase to be made in April.
- ✓ A service proposal entitled "Microbe-Mineral Interactions for Rare Earth Recovery" was submitted to Environmental Molecular Sciences Laboratory (EMSL, a DOE-funded user facility).
- ✓ In process of completing the paper work for subcontracts to Duke U. and Purdue U.